| 研究生: |
余啟仁 Yu, Chii-Zen |
|---|---|
| 論文名稱: |
螺栓成型機可調整行程之後通出機構之運動合成 Kinematic Synthesis of Adjustable Knock-out Mechanisms of Bolt Formers |
| 指導教授: |
黃文敏
Hwang, Wen-Miin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 螺栓成型機 、後通出機構 、可調整機構 |
| 外文關鍵詞: | Bolt former, Adjustable mechanism, Knock-out mechanism |
| 相關次數: | 點閱:89 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要目的是針對螺栓成型機之可調行程後通出機構,進行構想設計與尺度合成。首先,分析現有的螺栓成型機之後通出機構,以提出可調行程後通出機構的設計需求。其次,以功能分解設計方法及功能類比設計方法進行構想設計,共獲得三個可行的構想,包括平移凸輪式後通出機構、連桿式後通出機構及油壓式後通出機構。
關於凸輪式後通出機構的尺度合成,本文為了降低頂出過程的撞擊噪音,提出可調行程凸輪機構的設計方法,其可調整凸輪採用兩段圓弧連接五次或六次多項式曲線。後者除了六個邊界條件外,採用最佳方法來調整多項式曲線的第七個邊界條件,以降低頂出螺絲與頂出桿間的撞擊速度,新設計之凸輪式後通出機構的最大撞擊速度為原機構的84.8%。
本文所提出的連桿式後通出機構,由曲柄搖桿機構、可調平行四連桿機構及可調直線機構所組成,可調直線機構的耦桿上有一頂出螺絲,可推動頂出桿,使其頂出螺栓半成品。在與原機構相同的頂出行程範圍下,求得直線機構的桿長及調整桿的調整量,以產生不同行程的近似直線來推動頂出桿。此連桿式後通出機構之優點,在於頂出螺栓時不產生噪音,且頂出螺絲之偏移量較原後通出機構小。
本文所提出的油壓式後通出機構,包括滑件曲柄機構、油汽壓缸及可調油壓缸。滑件曲柄機構的滑件驅動油汽壓缸的活塞,再利用油壓驅動可調油壓缸以推動頂出桿,使其頂出螺栓半成品,而頂出行程由可調油壓缸來調整。油壓式後通出機構的撞擊,發生於滑件曲柄機構的滑件開始推動油氣壓缸的活塞時。在與原機構相同的頂出行程範圍下,本文採用最佳方法來設計滑件曲柄機構之尺寸,以降低所有行程中滑件和活塞間的最大撞擊速度,其最大撞擊速度為原機構的18.9%。
This study presents a method for the conceptual design and dimensional synthesis of the adjustable knock-out mechanisms of bolt formers. Based on the results of analyzing an existing knock-out mechanism of a bolt former, the design requirements for new adjustable knock-out mechanisms are proposed. Three feasible conceptual designs for the adjustable knock-out mechanisms of bolt formers, i.e., the knock-out mechanism with a translating cam, the knock-out linkage, the knock-out mechanism with oil cylinders, are obtained via the functional decomposition method and functional analog method.
A feasible method is presented to improve the existing knock-out cam-follower mechanism of a bolt former to decrease the noise in the knock-out process. The adjustable cam profile consists of two circular arcs and a fifth-degree or sixth-degree polynomial segment. For the cam profile with a sixth-degree polynomial segment, besides the six specified boundary conditions, a variable condition is used as a design variable for the optimization design to decrease the maximum strike velocity between the knock-out screw and knock-out pin for all knock-out strokes. The maximum strike velocity of the knock-out mechanism with the new cam profile is 84.8 percents of that of the existing mechanism.
The adjustable knock-out linkage of a bolt former mainly consists of an adjustable Hoeken linkage, an adjustable parallelogram, and a driving crank-rocker linkage. The knock-out screw on the coupler link of the Hoeken linkage drives the knock-out pin to knock out bolts. For the same knock-out stroke range as the existing knock-out mechanism, the link lengths of the Hoeken linkage are adjustable for generating various approximate straight-line to drive the knock-out pin. The advantages of the adjustable knock-out linkage are that there is no impact noise and that the maximum deviation of straight-line is smaller than that of the existing knock-out mechanism.
The adjustable knock-out mechanism with oil cylinders mainly consists of a slider-crank linkage, an air-oil cylinder, and an adjustable oil cylinder. The slider of the slider-crank linkage is applied to drive the air-oil cylinder. The adjustable oil cylinder controlling the knock-out stroke is driven by the air-oil cylinder through oil pipe. When the slider of the slider-crank linkage strikes the piston of the air-oil cylinder, it will make noise. For the same knock-out stroke range as the existing knock-out mechanism, the dimensions of the slider-crank linkage are then synthesized optimally to reduce the maximum strike velocity between the slider and piston. The maximum strike velocity of the adjustable knock-out mechanism with oil cylinders is only 18.9 percents of that of the existing mechanism.
Biswas, A., Stevens, M. and Kinzel, G. L., 2004, “A Comparison of Approximate Methods for the Analytical Determination of Profiles for Disk Cams with Roller Followers,” Mechanism and Machine Theory, Vol. 39, pp. 645-656.
Boston, R. H., 1952, Metal Processing, John Wiley and Sons, Inc., New York.
Chang, C. F., 2001, “Synthesis of Adjustable Four-bar Mechanisms Generating Circular Arcs with Specified Tangential Velocities,” Mechanism and Machine Theory, Vol. 36, pp. 387–395.
Chen, F. Y., 1982, Mechanics and Design of Cam Mechanism, Pergamon Press, New York.
Crawford, R. P., 1954, The Techniques of Creative Thinking, Hawthorn Books.
Dumschat, H., 1987, “Arrangement for the Ejection of Shaped Parts out of the Matrix of a Deformation Press,” United States Patent 4,635,463.
Flamme, W., 1981, “Metal-forming Press for the Production of Pressed Pieces,” European Patent 0,041,633.
Fraine J. D., 1999, “Reverse Engineering of Cams,” Proc. of the Tenth World Congress on the Theory of Machines and Mechanisms, Finland.
Funabashi, H., Iwatsuki, N., and Yoshiaki, Y., 1986, “A Synthesis of Crank-Length Adjusting Mechanisms,” Bulletin of JSME, Vol. 29, pp. 1946-1951.
Gerth, H., Goedtner, W., and Sautter, D., 2003, “Ejector Mechanism on the Die Side of a Single or Multi Stage Press,” European Patent 1,350,582.
Hite, W. H., and Loy, R. E., 1988, “Closed Die Forging Machine,” United States Patent 4,779,444.
Hoover, S. P. and Rinderle, J. R., 1989, “A Synthesis Strategy for Mechanical Devices,” Research in Engineering Design, Vol. 1, pp. 87-103.
Hwang, W. M. and Chang, C. F., 1994, “Simplified Equations for the Synthesis of Four-Bar Path Generator with Specified Tangents at Two Cusps,” ASME Transactions, Journal of Mechanical Design, Vol. 11, pp. 163-165.
Jasbir, S. A., 1989, Introduction to Optimum Design, McGraw-Hill Book Company, New York.
Kalt, W. E., 1978, “Punch Knock out Mechanism for Header,” United States Patent 4,091,486.
Kannapan, S. M. and Marshek, K. M., 1991, “Design Synthetic Reasoning: A Methodology for Mechanical Design,” Research in Engineering Design, Vol. 2, pp. 221-238.
Koch, F. and Rahn, O., 1974, “Variable Stroke Ejector Mechanism,” United States Patent 3,820,376.
Lee, Y. H., 1976, “Knockout Mechanism of the High-speed Automatic Cold Heading Machine,” United States Patent 3,938,208.
Mcbain, N. S. and Uhic, S. J., 1982, Choice of Technique in Bolt and Nut Manufacture, Scottish Academic Press, Edinburgh.
McGovern, J. F. and Sandor, G. N., 1973, “Kinematic Synthesis of Adjustable Mechanisms (Part 1: Function Generation),” ASME Transactions, Journal of Engineering for Industry, Vol. 95, pp. 417-422.
McGovern, J. F. and Sandor, G. N., 1973, “Kinematic Synthesis of Adjustable Mechanisms (Part 2: Path Generation),” ASME Transactions, Journal of Engineering for Industry, Vol. 95, pp. 423-429.
Naik, D. P. and Amarnath, C., 1989, “Synthesis of Adjustable Four Bar Function Generators through Five Bar Loop Closure Equations,” Mechanism and Machine Theory, Vol. 24, pp. 523–526.
Nedschroef Octrooi Maats, 1968, “Machine for Upsetting Workpieces for the Production of Screw, Bolt and the Like Blanks,” England Patent 1,136,448.
Nedschroef Octrooi Maats, 1972, “Machine for Upsetting Bolts and Similar Articles,” United States Patent 3,688,322.
Norton, R. L., 1989, Design of Machinery, McGraw-Hill Book Company, New York.
Norton, R. L., 1999, “In Search of the “Perfect” Straight Line and Constant Velocity Too,” Proc. of the Sixth Applied Mechanisms and Robotics Conference, Cincinnati, Ohio.
Reeve, J., 1995, Cams for Industry, Mechanical Engineering Publications Limited, London.
Riedisser, G., 1970, “Vorrichtung zum Auswerfen von Werkstuecken aus Pressmatrizen,” Germany Patent 1,927,830.
Riedisser, G. and Rahn, O., 1991, “Ejection Device for Ejecting a Workpiece From a Die in Forming Press,” United States Patent 5,067,892.
Sandor, G. N. and Erdman, A. G., 1984, Advanced Mechanism Design Analysis and Synthesis, Prentice-Hall, New Jersey.
Schulte, R., 1969, “Apparatus for Ejecting Articles in Cold Forming Presses or the Like,” England Patent 1,167,474.
Shigley, J. E. and Uicker, J. J., 1980, Theory of Machines and Mechanism, McGraw-Hill.
Shin, J. H., Lee, C. M., and Kim, J. S., 1996, “Shape Design of Disk Cam Mechanism Using Instant Velocity Centers,” Proc. of the Sixth Symposium on Transport Phenomena and Dynamics of Rotating Machinery, Vol. 1, pp. 178-186.
Shimojima, H., Ogawa, K., Fujiwara, A., and Sato, O., 1983, “Kinematic Synthesis of Adjustable Mechanisms,” Bulletin of JSME, Vol. 26, pp. 627-632.
Shin, J. H., Kang, D. W., Kim, J. S., and Kim, D. W., 2000, “A Study on Shape Design Approach of Disk Cams Using Relative Velocity of Follower,” J. of the Korean Society of Precision Engineering, Vol. 17, pp. 185-192.
Shin, J. H. and Zhang, Y. H., 2004, “A Computation Approach to Profile Generation of Planar Cam Mechanisms,” ASME Transactions, Journal of Mechanical Design, Vol. 12, pp. 183-188.
Shoup, T. E., 1984, “The Design of an Adjustable Three Dimensional Slider Crank Mechanism,” Mechanism and Machine Theory, Vol. 19, pp. 107-111.
Stehr, F., 1985, “Die Ejector Assembly for Multi-Stage Forming Machines,” United States Patent 4,552,525.
Tao, D. C. and Krishnamoothy, S., 1978, “Linkage Mechanism Adjustable for Variable Coupler Curves with Cusps,” Mechanism and Machine Theory, Vol. 13, pp. 577-583.
Tao, D. C. and Krishnamoothy, S., 1978, “Linkage Mechanism Adjustable for Variable Symmetrical Coupler Curves with a Double Point,” Mechanism and Machine Theory, Vol. 13, pp. 585-591.
Tsay, D. M. and Wei, H. M., 1995, “A General Approach to the Determination of Planar and Spatial Cam Profiles,” ASME Transactions, Journal of Mechanical Design, Vol. 11, pp. 259-265.
Tsuda, H. and Oyamada M., 1973, “Double Stroke Double Blow Header,” United States Patent 3,722,253.
Ulrich, K. T. and Seering, W. P., 1989, “Synthesis of Schematic Descriptions in Mechanical Design,” Research in Engineering Design, Vol. 1, pp. 3-18.
Waterbury Farrel Foundry Co., 1955, “Improvements in or Relating to Blank Ejecting Mechanism for Ejecting a Blan from a Die of a Machine,” England Patent 726,737.
Weller, A., 2001, “Ejection Device, Multi-Stage Press, and Method for Adjusting the Stroke of the Ejection Device,” European Patent 1,142,657.
Wilson, C. E. and Sadler, J. P., 1993, Kinematics and Dynamics of Machinery, Harper Collins College Publishers.
Wisebaker, R. E., 1983, “Forging Machine for Producing Rivets or the Like Having Running Adjustments,” United States Patent 4,395,988.
Wisebaker, R. E., 1985, “Forging Machine Kick out Drive with Running Adjustment,” United States Patent 4,538,437.
Yatomi, S. H., 1989, “Tool Change Apparatus for Machining Center and the Link,” Howa Machinery Ltd., Unites States Patent 4817267.
Yoshiichi, S., 2002, “Multistage Heading Machine,” Japan Patent 2,002,361,357.
Zanzerl, H., 1979, “Stamping Apparatus with Improved Ejection Mechanism,” Franch Patent 2,412,403.
Zhou, H. and Ting, K. L., 2002, “Adjustable Slider-Crank Linkages for Multiple Path Generation,” Mechanism and Machine Theory, Vol. 37, pp. 499–509.
Zwicky, F., 1969, “Discovery, Invention, Research, through the Morphological Approach,” Macmillan Company.
大澤良久、山田功,1994,"高速自動工具交換裝置之應用",機械設計第38卷第14號。
町田善弘,1989,"自動工具交換裝置",大塚凸輪,日本專利特開平1-115539號。
余啟仁,1997,綜合加工機自動換刀機構之打拉刀機構之設計,碩士論文,國立成功大學機械工程學系,台南。
何星翰,1998,可分離式電動螺絲起子防過載離合裝置之改良設計,碩士論文,國立成功大學機械工程學系,台南。
依日光,1993,衝床加工及其自動化,復漢出版社,台南。
黃文敏、余啟仁,1999,"自動換刀機構之打刀拉刀裝置",中華民國新型專利153139號。
黃文敏、余啟仁,2004,"螺絲成型機後通出機構",中華民國新型專利240280號。
陳允得,1999,"螺絲成型機後托機構上蓋改良構造",中華民國新型專利151608號。
渡邊克,1981,"物品交換裝置",三菱重工業,日本專利特開昭56-33246號。
蔣君宏,2002,平面機構之運動學與設計,高立圖書有限公司,台北。
顏鴻森、黃文敏、陳福成、黃漢泉、范揚昇,1995,"自動換刀機構之打刀拉刀裝置",美國專利5816987號。
顏鴻森、黃文敏、陳福成、黃漢泉、范揚昇,1996,"自動換刀機構之橢圓規打刀拉刀裝置",中華民國新型專利153139號。