簡易檢索 / 詳目顯示

研究生: 蔡欣容
Tsai, Shin-Rong
論文名稱: 建構創新帶藥神經導管在神經損傷細胞模型中對自噬表達上升而促進神經修復潛力之評估
Developing the Potential of an Innovative Drug-Eluting Nerve Conduit to Enhance Autophagy and Promote Nerve Repair in a Nerve Injury Cell Model
指導教授: 吳炳慶
Wu, Ping-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 118
中文關鍵詞: 周圍神經損傷光固化材料水凝膠聚乙二醇二甲基丙烯酸酯雷帕霉素細胞自噬神經修復
外文關鍵詞: Peripheral nerve injury (PNI), Photocurable material, Hydrogel, PEGDMA, Rapamycin, Autophagy, Axon regeneration
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 周圍神經損傷(PNI)是對周圍神經系統(PNS)損害的總稱,可能由於過度的外部力量引起,導致神經系統內信號傳遞的異常、錯誤或中斷。嚴重的PNI需要干預以協助神經再生。目前的治療方法包括自體移植、同種移植和異種移植,但這些方法都存在二次手術、與接受者不相符以及供體來源稀缺等不便之處。針對這一未滿足需求,我們建立一種生物相容性和可降解的導管,並添加藥物以促進PNI的恢復。
    在本研究中,我們通過對聚乙二醇(PEG)進行甲基丙烯酸化修飾,合成了一種可光固化聚合物PEGDMA,並與光起始劑Irgacure 2959結合,以建立聚合物水凝膠網絡(PEGDMA)。為了在親水性水凝膠中攜帶疏水性藥物雷帕霉素(RAPA),我們成功將RAPA包裹到聚乳酸-聚乙烯醇(PLGA)中,形成親水性RAPA-PLGA奈米顆粒(RNP NPs)。透過將RNP NPs整合到水凝膠網絡中(RNP NPs@PEGDMA),其機械性能通過在其表面塗覆單寧酸得到增強。FTIR結果表明,在整合後,RAPA的特徵峰在RNP NPs@PEGDMA-TA中仍然存在,顯示出RNP NPs與光固化系統之間的良好結合。
    RNP NPs@PEGDMA-TA的機械性能通過拉伸測試結果得到確認,此外,透過14天的膨脹測試其在水溶液中極佳的穩定性,並且透過8 周的降解實驗中,顯示其能夠維持型態完整性同時降解。RNP NPs@PEGDMA-TA 經過 72 小時的共同培養後,其細胞毒性實驗顯示出良好的細胞存活率。在 H₂O₂ 誘導的損傷後,RNP NPs@PEGDMA-TA 能夠有效促進自噬,通過 Beclin-1 的高表達量證實了其效果,並通過 GAP43 的高表現量闡明了自噬與氧化損傷後細胞再生之間的聯繫。
    我們成功開發了一種攜帶藥物的光固化聚合物網絡:RNP NPs@PEGDMA-TA 水凝膠。體外實驗表明,該材料能夠增強自噬,同時展現出適用於周邊神經損傷治療的良好物理和機械性能。此方法未來在促進軸突再生,甚至神經再生方面,或將展現出良好的可行性。

    Peripheral nerve injury (PNI) is a general term for damage to the peripheral nervous system (PNS), which may occur due to excessive external force, leading to aberrant, mistaken, or discontinuous signal transmission within the nervous system. Severe PNI requires intervention to assist in nerve regeneration. Current treatments include autografts, allografts, and xenografts, all of which involve inconveniences such as secondary surgeries, misfit to the recipient, and rare donor sources. A strategy to address this unmet need is the establishment of a biocompatible and biodegradable conduit with drugs to aid in the recovery of PNI.
    In this study, we synthesized a photocurable polymer, monomer PEGDMA, through the methacrylation of PEG, combined with the photoinitiator Irgacure 2959 to create a polymeric hydrogel network (PEGDMA). To carry the hydrophobic drug rapamycin (RAPA) within the hydrophilic hydrogel, we successfully encapsulated RAPA into PLGA, forming hydrophilic RAPA-PLGA nanoparticles (RNP NPs). The RNP NPs were then integrated into the hydrogel network (RNP NPs@PEGDMA), whose mechanical properties were enhanced by coating it with a layer of tannic acid (TA). FTIR results indicated that after integration, the characteristic peaks of RAPA remained in RNP NPs@PEGDMA-TA, demonstrating a proper combination between RNP NPs and the photocuring system.
    The mechanical properties of RNP NPs@PEGDMA-TA were confirmed by tensile test results, showing greater durability than standard sutures. The swelling ratio was minimal after 14 days of immersion, and the mass after degradation remained at 43.10% of the initial weight, demonstrating its ability to degrade without fracture over 8 weeks. The cytotoxicity of RNP NPs@PEGDMA-TA extracts exhibited well viability after 72 hours of co-incubation. The ability to improve autophagy following H₂O₂-induced damage was evidenced by the high expression of Beclin-1, and the connection between autophagy and cell regeneration after oxidative injury was clarified by the high expression of GAP43 after RNP NPs@PEGDMA-TA extraction treatment.
    We successfully developed a drug-loaded photocuring polymer network, RNP NPs@PEGDMA-TA hydrogel. In vitro experiments demonstrated its capacity to enhance autophagy, while also exhibiting favorable physical and mechanical properties for potential application in the treatment of peripheral nerve injury (PNI). This approach may prove effective in promoting axon regeneration and, ultimately, nerve regeneration in the future.

    摘要 I Abstract III 誌謝 V Contents VII List of Table X List of Figure XI Abbreviation List XIV Chapter 1.Introduction 1 1.1 The epidemiology of peripheral nerve injury 2 1.1.1 Definition of peripheral nerve injury 2 1.1.2 Nerve regeneration after peripheral nerve injury 4 1.1.3 The pathophysiology of hydrogen peroxide (H2O2)-induced oxidative injury and autophagy 8 1.1.4 Current treatment and procedure 10 1.2 Drug option to improve nerve regeneration 11 1.2.1 Medical intervention in PNI 11 1.2.2 Rapamycin (RAPA) in therapeutic aspect of PNI 12 1.3 Material composition of nerve guidance conduit 13 1.3.1 Review of nerve conduit composition 13 1.3.2 Photopolymerization in nerve guidance conduit constitution 14 1.3.3 Tannic acid (TA) in nerve regeneration 16 1.3.4 Nanoparticles (NPs) advantages in drug delivery system 17 1.4 The specific aim of this study 18 Chapter 2. Materials and Method 19 2.1 Chemical and reagents 20 2.2 Experimental instruments 20 2.3 The construction of nerve conduit 21 2.3.1 Methacrylation of PEG 21 2.3.2 Photopolymerization, coating and mold design of hydrogel 22 2.4 The synthesis of RNP NPs 24 2.5 The physical properties of materials 26 2.5.1 Methacrylation modification assessment of PEG 26 2.5.2 The measurement of RNP NPS particle size and surface potential 26 2.5.3 The morphology of of PEGDMA and PEGDMA-TA hydrogel 26 2.5.4 Examination of functional group of photocured hydrogel 27 2.6 Inspection of drug encapsulation efficiency of RNP NPs 28 2.6.1 The drug loading content of RNP NPs 28 2.6.2 The in vitro drug release simulation of RNP NPs and photocured hydrogel 29 2.6.3 The TA release assay of material 31 2.7 The performance of photocured hydrogels in mechanical properties 32 2.7.1 Uniaxial tensile test of photocured hydrogel 32 2.7.2 Swelling behavior of photocured hydrogel 32 2.7.3 In vitro enzymatic biodegradability test of photocured hydrogel 32 2.8 The behavior of photocured hydrogel on cell lines 34 2.8.1 Cell culture 34 2.8.2 Differentiation of PC12 34 2.8.3 Cell counts 35 2.8.4 Cytotoxicity validation of materials 36 2.8.5 Beclin-1 assay 37 2.8.6 GAP43 assay 38 2.9 Data and statistical analysis 39 Chapter 3. Results 40 3.1 The physical properties of materials 41 3.1.1 Methacrylation modification of PEG assessment by NMR spectra 41 3.1.2 Size distribution and zeta potential of RNP NPS particles 43 3.1.3 The surface topography of materials observed by SEM 46 3.1.4 Functional groups evaluation through FTIR spectra 50 3.2 The determination of drug concentration in materials 52 3.2.1 Drug loading and encapsulation efficiency of RNP NPs 52 3.2.2 Drug release of materials 53 3.2.3 TA concentration of materials and its release behavior 57 3.3 The mechanical properties of hydrogels 59 3.3.1 The uniaxial tensile test of hydrogels 59 3.3.2 Swelling test behavior of hydrogels 63 3.3.3 Biodegradability performance of materials 65 3.4 Quantification of differentiated PC12 68 3.5 Cell viability of materials 70 3.6 Beclin-1 assay of materials 72 3.7 GAP43 assay of materials 75 Chapter 4. Discussion 78 4.1 The characterization and advantage of PEGDMA-TA@RNP NPs 79 4.2 mTOR inhibition and activation in PNI and nerve regeneration 81 4.3 Autophagy and mTOR interaction during PNI 83 4.4 Prospective and current constraints 83 Chapter 5. Conclusion 85 References 89

    [1] D. Rempel, L. Dahlin, G. LUNDBORG, Pathophysiology of nerve compression syndromes: response of peripheral nerves to loading, JBJS 81(11) (1999) 1600-10.
    [2] B. Lopes, P. Sousa, R. Alvites, M. Branquinho, A.C. Sousa, C. Mendonça, L.M. Atayde, A.L. Luís, A.S. Varejão, A.C. Maurício, Peripheral nerve injury treatments and advances: one health perspective, International Journal of Molecular Sciences 23(2) (2022) 918.
    [3] S. Hall, The response to injury in the peripheral nervous system, The Journal of bone and joint surgery. British volume 87(10) (2005) 1309-1319.
    [4] P. Bhandari, Management of peripheral nerve injury, Journal of clinical orthopaedics and trauma 10(5) (2019) 862-866.
    [5] H. Seddon, Three types of nerve injury, Brain 66(4) (1943) 237-288.
    [6] F.J. Rodríguez, A. Valero-Cabré, X. Navarro, Regeneration and functional recovery following peripheral nerve injury, Drug discovery today: disease models 1(2) (2004) 177-185.
    [7] G. Hussain, J. Wang, A. Rasul, H. Anwar, M. Qasim, S. Zafar, N. Aziz, A. Razzaq, R. Hussain, J.-L.G. de Aguilar, Current status of therapeutic approaches against peripheral nerve injuries: a detailed story from injury to recovery, International journal of biological sciences 16(1) (2020) 116.
    [8] S. Sunderland, A classification of peripheral nerve injuries producing loss of function, Brain 74(4) (1951) 491-516.
    [9] A. Dellon, S. Mackinnon, Basic scientific and clinical applications of peripheral nerve regeneration, Surgery annual 20 (1988) 59-100.
    [10] I.A. Ederer, J.A. Mayer, J. Heinzel, J. Kolbenschlag, A. Daigeler, T. Wahler, Outcome After Reconstruction of 43 Digital Nerve Defects With Muscle-in-Vein Conduits, The Journal of Hand Surgery (2022).
    [11] A. Carolus, V. Braun, C. Brenke, M. Hofmann, P 71 Optical coherence tomography–a future imaging technique of peripheral nerves?, Clinical Neurophysiology 137 (2022) e55-e56.
    [12] W. Tang, X. Zhang, Y. Sun, B. Yao, X. Chen, X. Chen, X. Gao, Quantitative assessment of traumatic upper-limb peripheral nerve injuries using surface electromyography, Frontiers in Bioengineering and Biotechnology 8 (2020) 795.
    [13] J. Zhu, F. Liu, D. Li, J. Shao, B. Hu, Preliminary study of the types of traumatic peripheral nerve injuries by ultrasound, European radiology 21 (2011) 1097-1101.
    [14] I.V.M. Esteve, A.F. Farinas, A.C. Pollins, M.E. Nussenbaum, N.L. Cardwell, H. Kahn, M.D. Does, R.D. Dortch, W.P. Thayer, Noninvasive diffusion MRI to determine the severity of peripheral nerve injury, Magnetic Resonance Imaging 83 (2021) 96-106.
    [15] W.M. Padovano, J. Dengler, M.M. Patterson, A. Yee, A.K. Snyder-Warwick, M.D. Wood, A.M. Moore, S.E. Mackinnon, Incidence of nerve injury after extremity trauma in the United States, Hand 17(4) (2022) 615-623.
    [16] C.A. Taylor, D. Braza, J.B. Rice, T. Dillingham, The incidence of peripheral nerve injury in extremity trauma, American journal of physical medicine & rehabilitation 87(5) (2008) 381-385.
    [17] C.E. Fernandez, C.K. Franz, J.H. Ko, J.M. Walter, I.J. Koralnik, S. Ahlawat, S. Deshmukh, Imaging review of peripheral nerve injuries in patients with COVID-19, Radiology 298(3) (2021) E117-E130.
    [18] G.R. Malik, A.R. Wolfe, R. Soriano, L. Rydberg, L.F. Wolfe, S. Deshmukh, J.H. Ko, R.P. Nussbaum, S.D. Dreyer, P. Jayabalan, Injury-prone: peripheral nerve injuries associated with prone positioning for COVID-19-related acute respiratory distress syndrome, British journal of anaesthesia 125(6) (2020) e478-e480.
    [19] S.K. Lee, S.W. Wolfe, Peripheral nerve injury and repair, JAAOS-Journal of the American Academy of Orthopaedic Surgeons 8(4) (2000) 243-252.
    [20] S.P. Mohan, M. Ramalingam, Neuroscience of peripheral nerve regeneration, Journal of Pharmacy & Bioallied Sciences 13(Suppl 2) (2021) S913.
    [21] X.-L. Chu, X.-Z. Song, Q. Li, Y.-R. Li, F. He, X.-S. Gu, D. Ming, Basic mechanisms of peripheral nerve injury and treatment via electrical stimulation, Neural regeneration research 17(10) (2022) 2185.
    [22] A. DiAntonio, Axon degeneration: mechanistic insights lead to therapeutic opportunities for the prevention and treatment of peripheral neuropathy, Pain 160(Suppl 1) (2019) S17.
    [23] A.D. Gaudet, P.G. Popovich, M.S. Ramer, Wallerian degeneration: gaining perspective on inflammatory events after peripheral nerve injury, Journal of neuroinflammation 8(1) (2011) 1-13.
    [24] D. Lindholm, R. Heumann, M. Meyer, H. Thoenen, Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve, Nature 330 (1987) 658-659.
    [25] B. Liu, W. Xin, J.-R. Tan, R.-P. Zhu, T. Li, D. Wang, S.-S. Kan, D.-K. Xiong, H.-H. Li, M.-M. Zhang, Myelin sheath structure and regeneration in peripheral nerve injury repair, Proceedings of the National Academy of Sciences 116(44) (2019) 22347-22352.
    [26] K.V. Panzer, J.C. Burrell, K.V. Helm, E.M. Purvis, Q. Zhang, A.D. Le, J.C. O’Donnell, D.K. Cullen, Tissue engineered bands of büngner for accelerated motor and sensory axonal outgrowth, Frontiers in Bioengineering and Biotechnology 8 (2020) 580654.
    [27] N. Divac, M. Aksić, L. Rasulić, M. Jakovčevski, M. Basailović, I. Jakovčevski, Pharmacology of repair after peripheral nerve injury, International Journal of Clinical Pharmacology and Therapeutics 59(6) (2021) 447.
    [28] C.Y. Poetera, D. Abimanyu, Peripheral nerve injury and its regeneration processes: a biomolecular point of view, Bali Medical Journal 10(2) (2021) 927-934.
    [29] A. Thibodeau, T. Galbraith, C.M. Fauvel, H.T. Khuong, F. Berthod, Repair of peripheral nerve injuries using a prevascularized cell-based tissue-engineered nerve conduit, Biomaterials 280 (2022) 121269.
    [30] T. Gordon, Peripheral nerve regeneration and muscle reinnervation, International journal of molecular sciences 21(22) (2020) 8652.
    [31] G.-m. Liu, K. Xu, J. Li, Y.-g. Luo, Curcumin upregulates S100 expression and improves regeneration of the sciatic nerve following its complete amputation in mice, Neural regeneration research 11(8) (2016) 1304-1311.
    [32] A. Beckers, S. Vanhunsel, A. Van Dyck, S. Bergmans, L. Masin, L. Moons, Injury-induced autophagy delays axonal regeneration after optic nerve damage in adult zebrafish, Neuroscience 470 (2021) 52-69.
    [33] D. Chung, A. Shum, G. Caraveo, GAP-43 and BASP1 in axon regeneration: implications for the treatment of neurodegenerative diseases, Frontiers in cell and developmental biology 8 (2020) 567537.
    [34] X. Yan, W. He, S. Pan, Amphetamine-induced neurite injury in PC12 cells through inhibiting GAP-43 pathway, NeuroToxicology 93 (2022) 103-111.
    [35] X. Liu, J. Yang, C. Lu, S. Jiang, X. Nie, J. Han, L. Yin, J. Jiang, Downregulation of Mfn2 participates in manganese-induced neuronal apoptosis in rat striatum and PC12 cells, Neurochemistry International 108 (2017) 40-51.
    [36] N. Kamble, D. Shukla, D. Bhat, Peripheral nerve injuries: electrophysiology for the neurosurgeon, Neurology India 67(6) (2019) 1419.
    [37] M.L. Wang, M. Rivlin, J.G. Graham, P.K. Beredjiklian, Peripheral nerve injury, scarring, and recovery, Connective tissue research 60(1) (2019) 3-9.
    [38] C.B. Reed, L.R. Frick, A. Weaver, M. Sidoli, E. Schlant, M.L. Feltri, L. Wrabetz, Deletion of calcineurin in Schwann cells does not affect developmental myelination, but reduces autophagy and delays myelin clearance after peripheral nerve injury, Journal of Neuroscience 40(32) (2020) 6165-6176.
    [39] S. Vijayavenkataraman, Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods, Acta biomaterialia 106 (2020) 54-69.
    [40] J.R. Gale, J.Y. Gedeon, C.J. Donnelly, M.S. Gold, Local translation in primary afferents and its contribution to pain, Pain 163(12) (2022) 2302-2314.
    [41] S. Patodia, G. Raivich, Role of transcription factors in peripheral nerve regeneration, Frontiers in molecular neuroscience 5 (2012) 8.
    [42] G. Seo, S.K. Kim, Y.J. Byun, E. Oh, S.-W. Jeong, G.T. Chae, S.-B. Lee, Hydrogen peroxide induces Beclin 1-independent autophagic cell death by suppressing the mTOR pathway via promoting the ubiquitination and degradation of Rheb in GSH-depleted RAW 264.7 cells, Free radical research 45(4) (2011) 389-399.
    [43] F. Meda, A. Joliot, S. Vriz, Nerves and hydrogen peroxide: how old enemies become new friends, Neural Regeneration Research 12(4) (2017) 568-569.
    [44] X. Luo, B. Chen, R. Zheng, P. Lin, J. Li, H. Chen, Hydrogen peroxide induces apoptosis through the mitochondrial pathway in rat Schwann cells, Neuroscience letters 485(1) (2010) 60-64.
    [45] D. Zhang, Y. Bing, S.-Q. Chang, M. Sheng-Suo, S. Jian-Xin, Y. Lin, L. Xing, S. Hui-Mei, J. Bei, Y.-C. Zheng, Protective effect of paeoniflorin on H2O2 induced Schwann cells injury based on network pharmacology and experimental validation, Chinese Journal of Natural Medicines 19(2) (2021) 90-99.
    [46] S. Yang, Q. Gao, S. Xing, X. Feng, L. Peng, H. Dong, L. Bao, J. Zhang, Y. Hu, G. Li, Neuroprotective effects of Buyang Huanwu decoction against hydrogen peroxide induced oxidative injury in Schwann cells, Journal of Ethnopharmacology 137(3) (2011) 1095-1101.
    [47] L. Guo, J. Du, D.-f. Yuan, Y. Zhang, S. Zhang, H.-c. Zhang, J.-w. Mi, Y.-l. Ning, M.-j. Chen, D.-l. Wen, Optimal H 2 O 2 preconditioning to improve bone marrow mesenchymal stem cells’ engraftment in wound healing, Stem cell research & therapy 11 (2020) 1-17.
    [48] M. Mantzaris, S. Bellou, V. Skiada, N. Kitsati, T. Fotsis, D. Galaris, Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis, Free Radical Biology and Medicine 97 (2016) 454-465.
    [49] S.G. Mathiassen, D. De Zio, F. Cecconi, Autophagy and the cell cycle: a complex landscape, Frontiers in oncology 7 (2017) 51.
    [50] D.K. Yon, Y.J. Kim, D.C. Park, S.Y. Jung, S.S. Kim, J.H. Yeo, J. Lee, J.M. Lee, S.G. Yeo, Induction of Autophagy and Its Role in Peripheral Nerve Regeneration after Peripheral Nerve Injury, International Journal of Molecular Sciences 24(22) (2023) 16219.
    [51] L. Benevides, E. De Moraes, N. De Moraes, Incidence of peripheral nerve injury in oral maxillofacial surgery: A restrospective clinical study, International Journal of Oral and Maxillofacial Surgery 48 (2019) 60.
    [52] M.L. Rayner, J. Healy, J.B. Phillips, Repurposing small molecules to target PPAR-γ as new therapies for peripheral nerve injuries, Biomolecules 11(9) (2021) 1301.
    [53] M.L. Rayner, J. Healy, J.B. Phillips, Drug therapies for peripheral nerve injuries, Peripheral nerve tissue engineering and regeneration, Springer2022, pp. 437-463.
    [54] A. Beris, I. Gkiatas, I. Gelalis, D. Papadopoulos, I. Kostas-Agnantis, Current concepts in peripheral nerve surgery, European Journal of Orthopaedic Surgery & Traumatology 29 (2019) 263-269.
    [55] A. Beris, M. Lykissas, A. Korompilias, G. Mitsionis, End-to-side nerve repair in peripheral nerve injury, Journal of neurotrauma 24(5) (2007) 909-916.
    [56] I. Papalia, G. Ronchi, L. Muratori, A. Mazzucco, L. Magaudda, S. Geuna, Direct muscle neurotization after end-to end and end-to-side neurorrhaphy: an experimental study in the rat forelimb model, Neural Regeneration Research 7(29) (2012) 2273.
    [57] J.W. Griffin, M.V. Hogan, A.B. Chhabra, D.N. Deal, Peripheral nerve repair and reconstruction, Jbjs 95(23) (2013) 2144-2151.
    [58] J. Geissler, M. Stevanovic, Management of large peripheral nerve defects with autografting, Injury 50 (2019) S64-S67.
    [59] K.K. Das, A.K. Srivastava, Nerve conduits as replacements of autografts in peripheral nerve surgery: Still a work in progress, Neurology India 67(7) (2019) 115.
    [60] K.C.S. Roballo, J. Bushman, Evaluation of the host immune response and functional recovery in peripheral nerve autografts and allografts, Transplant immunology 53 (2019) 61-71.
    [61] J.I. Leckenby, C. Furrer, L. Haug, B. Juon Personeni, E. Vögelin, A retrospective case series reporting the outcomes of Avance nerve allografts in the treatment of peripheral nerve injuries, Plastic and reconstructive surgery 145(2) (2020) 368e-381e.
    [62] J. Chato‐Astrain, C. Philips, F. Campos, D. Durand‐Herrera, O.D. García‐García, A. Roosens, M. Alaminos, A. Campos, V. Carriel, Detergent‐based decellularized peripheral nerve allografts: An in vivo preclinical study in the rat sciatic nerve injury model, Journal of tissue engineering and regenerative medicine 14(6) (2020) 789-806.
    [63] B.R. Peters, M.D. Wood, D.A. Hunter, S.E. Mackinnon, Acellular nerve allografts in major peripheral nerve repairs: An analysis of cases presenting with limited recovery, Hand (2021) 15589447211003175.
    [64] F.-E. Pedroza-Montoya, Y.-A. Tamez-Mata, M. Simental-Mendía, A. Soto-Domínguez, M.-M. García-Pérez, S. Said-Fernández, R. Montes-de-Oca-Luna, J.-R. González-Flores, H.-G. Martínez-Rodríguez, F. Vilchez-Cavazos, Repair of ovine peripheral nerve injuries with xenogeneic human acellular sciatic nerves prerecellularized with allogeneic Schwann-like cells—an innovative and promising approach, Regenerative Therapy 19 (2022) 131-143.
    [65] A. Zaminy, S. Sayad-Fathi, F.M. Kasmaie, Z. Jahromi, A. Zendedel, Decellularized peripheral nerve grafts by a modified protocol for repair of rat sciatic nerve injury, Neural Regeneration Research 16(6) (2021) 1086.
    [66] J. Lans, K. Eberlin, P.J. Evans, D. Mercer, J.A. Greenberg, J.F. Styron, A Systematic Review and Meta-Analysis of Nerve Gap Repair: Comparative Effectiveness of Allografts, Autografts, and Conduits, Plastic and Reconstructive Surgery 10.1097.
    [67] K.D. Bergmeister, L. Große-Hartlage, S.C. Daeschler, P. Rhodius, A. Böcker, M. Beyersdorff, A.O. Kern, U. Kneser, L. Harhaus, Acute and long-term costs of 268 peripheral nerve injuries in the upper extremity, PloS one 15(4) (2020) e0229530.
    [68] M. Karsy, R. Watkins, M.R. Jensen, J. Guan, A.A. Brock, M.A. Mahan, Trends and cost analysis of upper extremity nerve injury using the national (nationwide) inpatient sample, World neurosurgery 123 (2019) e488-e500.
    [69] M.F. Meek, J.H. Coert, US Food and Drug Administration/Conformit Europe-approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves, Annals of plastic surgery 60(1) (2008) 110-116.
    [70] S. Yi, Y. Zhang, X. Gu, L. Huang, K. Zhang, T. Qian, X. Gu, Application of stem cells in peripheral nerve regeneration, Burns & trauma 8 (2020).
    [71] O.S. Manoukian, J.T. Baker, S. Rudraiah, M.R. Arul, A.T. Vella, A.J. Domb, S.G. Kumbar, Functional polymeric nerve guidance conduits and drug delivery strategies for peripheral nerve repair and regeneration, Journal of Controlled Release 317 (2020) 78-95.
    [72] Z. Zhou, G. Luo, C. Li, P. Zhang, W. Chen, X. Li, J. Tang, L. Qing, Metformin induces M2 polarization via AMPK/PGC-1α/PPAR-γ pathway to improve peripheral nerve regeneration, American Journal of Translational Research 15(5) (2023) 3778.
    [73] R. Li, D. Li, C. Wu, L. Ye, Y. Wu, Y. Yuan, S. Yang, L. Xie, Y. Mao, T. Jiang, Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration, Theranostics 10(4) (2020) 1649.
    [74] R. Li, D.-h. Li, H.-y. Zhang, J. Wang, X.-k. Li, J. Xiao, Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration, Acta Pharmacologica Sinica 41(10) (2020) 1289-1300.
    [75] K.J. Zuo, T.M. Saffari, K. Chan, A.Y. Shin, G.H. Borschel, Systemic and local FK506 (tacrolimus) and its application in peripheral nerve surgery, The Journal of hand surgery 45(8) (2020) 759-765.
    [76] B. Xiao, F. Feturi, A.-J.A. Su, Y. Van der Merwe, J.M. Barnett, K. Jabbari, N.J. Khatter, B. Li, E.B. Katzel, R. Venkataramanan, Nerve Wrap for Local Delivery of FK506/Tacrolimus Accelerates Nerve Regeneration, International Journal of Molecular Sciences 25(2) (2024) 847.
    [77] Y. Wang, Z. Yan, W. Liu, C. Liu, N. Xu, Y. Wu, F. Sun, X. Wang, Y. Qian, L. Jiang, Biomechanically‐Adapted Immunohydrogels Reconstructing Myelin Sheath for Peripheral Nerve Regeneration, Advanced Healthcare Materials 11(20) (2022) 2201596.
    [78] M. Joncquel, J. Labasque, J. Demaret, M.-A. Bout, A. Hamroun, B. Hennart, M. Tronchon, M. Defevre, I. Kim, A. Kerckhove, Targeted metabolomics analysis suggests that tacrolimus alters protection against oxidative stress, Antioxidants 12(7) (2023) 1412.
    [79] X.-G. Li, J.-H. Du, Y. Lu, X.-J. Lin, Neuroprotective effects of rapamycin on spinal cord injury in rats by increasing autophagy and Akt signaling, Neural regeneration research 14(4) (2019) 721-727.
    [80] J. Dominguez, K. Mahalati, B. Kiberd, V.C. McAlister, A.S. MacDonald, Conversion to rapamycin immunosuppression in renal transplant recipients: report of an initial Experience1, Transplantation 70(8) (2000) 1244-1247.
    [81] M. Laplante, D.M. Sabatini, mTOR signaling at a glance, Journal of cell science 122(20) (2009) 3589-3594.
    [82] J. Bové, M. Martínez-Vicente, M. Vila, Fighting neurodegeneration with rapamycin: mechanistic insights, Nature Reviews Neuroscience 12(8) (2011) 437-452.
    [83] M. Kaeberlein, V. Galvan, Rapamycin and Alzheimer’s disease: time for a clinical trial?, Science translational medicine 11(476) (2019) eaar4289.
    [84] A.B. Pupyshev, M.A. Tikhonova, A.A. Akopyan, M.V. Tenditnik, N.I. Dubrovina, T.A. Korolenko, Therapeutic activation of autophagy by combined treatment with rapamycin and trehalose in a mouse MPTP-induced model of Parkinson's disease, Pharmacology Biochemistry and Behavior 177 (2019) 1-11.
    [85] C. Zhang, C.C. Chan, K.F. Cheung, M.K. Chau, D.Y. Yap, M.K. Ma, K.W. Chan, S. Yung, T.M. Chan, Effect of mycophenolate and rapamycin on renal fibrosis in lupus nephritis, Clinical Science 133(15) (2019) 1721-1744.
    [86] W. Tai, S. Deng, W. Wu, Z. Li, W. Lei, Y. Wang, C. Vongphouttha, T. Zhang, Z. Dong, Rapamycin attenuates the paraquat‐induced pulmonary fibrosis through activating Nrf2 pathway, Journal of Cellular Physiology 235(2) (2020) 1759-1768.
    [87] S. Lee, S.K. Kim, H. Park, Y.J. Lee, S.H. Park, K.J. Lee, D.G. Lee, H. Kang, J.E. Kim, Contribution of autophagy-Notch1-mediated NLRP3 inflammasome activation to chronic inflammation and fibrosis in keloid fibroblasts, International Journal of Molecular Sciences 21(21) (2020) 8050.
    [88] V. Chiono, C. Tonda-Turo, Trends in the design of nerve guidance channels in peripheral nerve tissue engineering, Progress in neurobiology 131 (2015) 87-104.
    [89] J. Park, J. Jeon, B. Kim, M.S. Lee, S. Park, J. Lim, J. Yi, H. Lee, H.S. Yang, J.Y. Lee, Electrically conductive hydrogel nerve guidance conduits for peripheral nerve regeneration, Advanced Functional Materials 30(39) (2020) 2003759.
    [90] W. Zhu, K.R. Tringale, S.A. Woller, S. You, S. Johnson, H. Shen, J. Schimelman, M. Whitney, J. Steinauer, W. Xu, Rapid continuous 3D printing of customizable peripheral nerve guidance conduits, Materials Today 21(9) (2018) 951-959.
    [91] H. Xu, J.M. Holzwarth, Y. Yan, P. Xu, H. Zheng, Y. Yin, S. Li, P.X. Ma, Conductive PPY/PDLLA conduit for peripheral nerve regeneration, Biomaterials 35(1) (2014) 225-235.
    [92] L. Guttmann, L. Michaelis, Proceedings of the annual scientific meeting of the International Medical Society of Paraplegia, 28 to 30 July 1969, held at Stoke Mandeville Hospital, Aylesbury, Paraplegia 8(2) (1970) 67-69.
    [93] I. Chiulan, E.B. Heggset, S.I. Voicu, G. Chinga-Carrasco, Photopolymerization of bio-based polymers in a biomedical engineering perspective, Biomacromolecules 22(5) (2021) 1795-1814.
    [94] Z. Zheng, D. Eglin, M. Alini, G.R. Richards, L. Qin, Y. Lai, Visible light-induced 3D bioprinting technologies and corresponding bioink materials for tissue engineering: a review, Engineering 7(7) (2021) 966-978.
    [95] A.K. Nguyen, P.L. Goering, R.K. Elespuru, S. Sarkar Das, R.J. Narayan, The photoinitiator lithium phenyl (2, 4, 6-trimethylbenzoyl) phosphinate with exposure to 405 nm light is cytotoxic to mammalian cells but not mutagenic in bacterial reverse mutation assays, Polymers 12(7) (2020) 1489.
    [96] J. Huh, Y.-W. Moon, J. Park, A. Atala, J.J. Yoo, S.J. Lee, Combinations of photoinitiator and UV absorber for cell-based digital light processing (DLP) bioprinting, Biofabrication 13(3) (2021) 034103.
    [97] N. Kariksiz, B. Balaban, T. Gencoglu, F. Morlet-Savary, J. Lalevee, D. Avci, A cyclopolymerizable, doubly Irgacure 2959 functionalized quaternary ammonium salt photoinitiator and its water-soluble copolymer with diallyldimethylammonium chloride, Polymer Chemistry 14(11) (2023) 1195-1205.
    [98] H. Xu, J. Casillas, S. Krishnamoorthy, C. Xu, Effects of Irgacure 2959 and lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs, Biomedical Materials 15(5) (2020) 055021.
    [99] J.S. Brand, L. Forster, T. Böck, P. Stahlhut, J. Teßmar, J. Groll, K. Albrecht, Covalently Cross‐Linked Pig Gastric Mucin Hydrogels Prepared by Radical‐Based Chain‐Growth and Thiol‐ene Mechanisms, Macromolecular Bioscience 22(4) (2022) 2100274.
    [100] W. Tomal, J. Ortyl, Water-soluble photoinitiators in biomedical applications, Polymers 12(5) (2020) 1073.
    [101] X. Fang, H. Guo, W. Zhang, H. Fang, Q. Li, S. Bai, P. Zhang, Reduced graphene oxide–GelMA–PCL hybrid nanofibers for peripheral nerve regeneration, Journal of Materials Chemistry B 8(46) (2020) 10593-10601.
    [102] K. Da Silva, P. Kumar, S.F. van Vuuren, V. Pillay, Y.E. Choonara, Three-dimensional printability of an ECM-based gelatin methacryloyl (GelMA) biomaterial for potential neuroregeneration, ACS omega 6(33) (2021) 21368-21383.
    [103] A. Zennifer, M. Thangadurai, D. Sundaramurthi, S. Sethuraman, Additive manufacturing of peripheral nerve conduits–fabrication methods, design considerations and clinical challenges, SLAS technology 28(3) (2023) 102-126.
    [104] J. Zhu, Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineering, Biomaterials 31(17) (2010) 4639-4656.
    [105] Z. Wang, Q. Ye, S. Yu, B. Akhavan, Poly Ethylene Glycol (PEG)‐Based Hydrogels for Drug Delivery in Cancer Therapy: A Comprehensive Review, Advanced healthcare materials 12(18) (2023) 2300105.
    [106] S.-Y. Chang, T. Ching, M. Hashimoto, Bioprinting using PEGDMA-based hydrogel on DLP printer, Materials Today: Proceedings 70 (2022) 179-183.
    [107] R.R. Asawa, J.C. Belkowski, D.A. Schmitt, E.M. Hernandez, A.E. Babcock, C.K. Lochner, H.N. Baca, C.M. Rylatt, I.S. Steffes, J.J. VanSteenburg, Transient cellular adhesion on poly (ethylene-glycol)-dimethacrylate hydrogels facilitates a novel stem cell bandage approach, Plos one 13(8) (2018) e0202825.
    [108] H. Wang, Y. Xia, Z. Zhang, Z. Xie, 3D gradient printing based on digital light processing, Journal of Materials Chemistry B 11(37) (2023) 8883-8896.
    [109] T. Fourniols, L.D. Randolph, A. Staub, K. Vanvarenberg, J.G. Leprince, V. Préat, A. des Rieux, F. Danhier, Temozolomide-loaded photopolymerizable PEG-DMA-based hydrogel for the treatment of glioblastoma, Journal of Controlled Release 210 (2015) 95-104.
    [110] W. Yan, M. Shi, C. Dong, L. Liu, C. Gao, Applications of tannic acid in membrane technologies: A review, Advances in colloid and interface science 284 (2020) 102267.
    [111] W. Jing, C. Xiaolan, C. Yu, Q. Feng, Y. Haifeng, Pharmacological effects and mechanisms of tannic acid, Biomedicine & Pharmacotherapy 154 (2022) 113561.
    [112] Z. Guo, W. Xie, J. Lu, X. Guo, J. Xu, W. Xu, Y. Chi, N. Takuya, H. Wu, L. Zhao, Tannic acid-based metal phenolic networks for bio-applications: a review, Journal of Materials Chemistry B 9(20) (2021) 4098-4110.
    [113] G. Sathishkumar, K. Gopinath, K. Zhang, E.-T. Kang, L. Xu, Y. Yu, Recent progress in tannic acid-driven antibacterial/antifouling surface coating strategies, Journal of Materials Chemistry B 10(14) (2022) 2296-2315.
    [114] J. Yeo, J. Lee, S. Yoon, W.J. Kim, Tannic acid-based nanogel as an efficient anti-inflammatory agent, Biomaterials science 8(4) (2020) 1148-1159.
    [115] W. Shi, Y. Kong, Y. Su, M.A. Kuss, X. Jiang, X. Li, J. Xie, B. Duan, Tannic acid-inspired, self-healing, and dual stimuli responsive dynamic hydrogel with potent antibacterial and anti-oxidative properties, Journal of Materials Chemistry B 9(35) (2021) 7182-7195.
    [116] K. Dong, Y. Jiang, Y. Zhang, Z. Qin, L. Mo, Tannic acid-assisted fabrication of antibacterial sodium alginate-based gel beads for the multifunctional adsorption of heavy metal ions and dyes, International Journal of Biological Macromolecules 252 (2023) 126249.
    [117] M. Haddad, R. Gaudreault, G. Sasseville, P.T. Nguyen, H. Wiebe, T. Van De Ven, S. Bourgault, N. Mousseau, C. Ramassamy, Molecular interactions of tannic acid with proteins associated with SARS-CoV-2 infectivity, International journal of molecular sciences 23(5) (2022) 2643.
    [118] J.-H. Lee, J.-H. Park, H.S. Cho, S.W. Joo, M.H. Cho, J. Lee, Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus, Biofouling 29(5) (2013) 491-499.
    [119] Z.-Y. Zhang, Y. Sun, Y.-D. Zheng, W. He, Y.-Y. Yang, Y.-J. Xie, Z.-X. Feng, K. Qiao, A biocompatible bacterial cellulose/tannic acid composite with antibacterial and anti-biofilm activities for biomedical applications, Materials Science and Engineering: C 106 (2020) 110249.
    [120] M.F. Siddiqui, H.-S. Oh, M. Rzechowicz, H. Winters, T.H. Chong, A.G. Fane, Biofouling control potential of tannic acid, ellagic acid, and epigallocatechin against Pseudomonas aeruginosa and reverse osmosis membrane multispecies community, Journal of Industrial and Engineering Chemistry 30 (2015) 204-211.
    [121] C. Chen, X. Yang, S.-j. Li, C. Zhang, Y.-n. Ma, Y.-x. Ma, P. Gao, S.-z. Gao, X.-j. Huang, Tannic acid–thioctic acid hydrogel: A novel injectable supramolecular adhesive gel for wound healing, Green Chemistry 23(4) (2021) 1794-1804.
    [122] Z. Liu, S. Guo, L. Dong, P. Wu, K. Li, X. Li, X. Li, H. Qian, Q. Fu, A tannic acid doped hydrogel with small extracellular vesicles derived from mesenchymal stem cells promotes spinal cord repair by regulating reactive oxygen species microenvironment, Materials Today Bio 16 (2022) 100425.
    [123] M. Salman, H. Tabassum, S. Parvez, Tannic acid provides neuroprotective effects against traumatic brain injury through the PGC-1α/Nrf2/HO-1 pathway, Molecular Neurobiology 57(6) (2020) 2870-2885.
    [124] M.J. Mitchell, M.M. Billingsley, R.M. Haley, M.E. Wechsler, N.A. Peppas, R. Langer, Engineering precision nanoparticles for drug delivery, Nature reviews drug discovery 20(2) (2021) 101-124.
    [125] F. Danhier, E. Ansorena, J.M. Silva, R. Coco, A. Le Breton, V. Préat, PLGA-based nanoparticles: an overview of biomedical applications, Journal of controlled release 161(2) (2012) 505-522.
    [126] C. Boada, A. Zinger, C. Tsao, P. Zhao, J.O. Martinez, K. Hartman, T. Naoi, R. Sukhovershin, M. Sushnitha, R. Molinaro, Rapamycin-loaded biomimetic nanoparticles reverse vascular inflammation, Circulation Research 126(1) (2020) 25-37.
    [127] K. Nawrotek, M. Tylman, A. Adamus-Włodarczyk, K. Rudnicka, J. Gatkowska, M. Wieczorek, R. Wach, Influence of chitosan average molecular weight on degradation and stability of electrodeposited conduits, Carbohydrate polymers 244 (2020) 116484.
    [128] K. Nawrotek, M. Kubicka, J. Gatkowska, M. Wieczorek, S. Michlewska, A. Bekier, R. Wach, K. Rudnicka, Controlling the spatiotemporal release of nerve growth factor by chitosan/polycaprolactone conduits for use in peripheral nerve regeneration, International Journal of Molecular Sciences 23(5) (2022) 2852.
    [129] G. Le Guyader, B. Do, I.B. Rietveld, P. Coric, S. Bouaziz, J.-M. Guigner, P.-H. Secretan, K. Andrieux, M. Paul, Mixed polymeric micelles for rapamycin skin delivery, Pharmaceutics 14(3) (2022) 569.
    [130] Y.V. Il’ichev, L. Alquier, C.A. Maryanoff, Degradation of rapamycin and its ring-opened isomer: role of base catalysis, Arkivoc 12 (2007) 110-131.
    [131] J.A. Killion, L.M. Geever, D.M. Devine, J.E. Kennedy, C.L. Higginbotham, Mechanical properties and thermal behaviour of PEGDMA hydrogels for potential bone regeneration application, Journal of the mechanical behavior of biomedical materials 4(7) (2011) 1219-1227.
    [132] H. Zhou, A. Gupta, T. Zou, J. Zhou, Photoresist derived carbon for growth and differentiation of neuronal cells, International Journal of Molecular Sciences 8(8) (2007) 884-893.
    [133] K.P. Das, T.M. Freudenrich, W.R. Mundy, Assessment of PC12 cell differentiation and neurite growth: a comparison of morphological and neurochemical measures, Neurotoxicology and teratology 26(3) (2004) 397-406.
    [134] A.H. Van Hove, B.D. Wilson, D.S. Benoit, Microwave-assisted functionalization of poly (ethylene glycol) and on-resin peptides for use in chain polymerizations and hydrogel formation, JoVE (Journal of Visualized Experiments) (80) (2013) e50890.
    [135] S. Lin-Gibson, S. Bencherif, J.A. Cooper, S.J. Wetzel, J.M. Antonucci, B.M. Vogel, F. Horkay, N.R. Washburn, Synthesis and characterization of PEG dimethacrylates and their hydrogels, Biomacromolecules 5(4) (2004) 1280-1287.
    [136] M. Danaei, M. Dehghankhold, S. Ataei, F. Hasanzadeh Davarani, R. Javanmard, A. Dokhani, S. Khorasani, M. Mozafari, Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems, Pharmaceutics 10(2) (2018) 57.
    [137] S. Bhattacharjee, DLS and zeta potential–what they are and what they are not?, Journal of controlled release 235 (2016) 337-351.
    [138] N. Aelenei, M.I. Popa, O. Novac, G. Lisa, L. Balaita, Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release, Journal of Materials Science: Materials in Medicine 20 (2009) 1095-1102.
    [139] X. Yao, X. Zheng, J. Zhang, K. Cai, Oxidation-induced surface deposition of tannic acid: towards molecular gates on porous nanocarriers for acid-responsive drug delivery, Rsc Advances 6(80) (2016) 76473-76481.
    [140] M. Byrne, A. Aly, The surgical suture, Aesthetic surgery journal 39(Supplement_2) (2019) S67-S72.
    [141] J. Pulido, M. Zobitz, K. An, Scleral penetration force requirements for commonly used intravitreal needles, Eye 21(9) (2007) 1210-1211.
    [142] T. Pavicic, K.L. Webb, K. Frank, R.H. Gotkin, B. Tamura, S. Cotofana, Arterial wall penetration forces in needles versus cannulas, Plastic and reconstructive surgery 143(3) (2019) 504e-512e.
    [143] J.E. Pichamuthu, S. Maiti, M.G. Gan, N.M. Verdecchia, S.L. Orebaugh, D.A. Vorp, Mechanics of anesthetic needle penetration into human sciatic nerve, Journal of Biomechanics 74 (2018) 92-97.
    [144] A.J. Kirby, The lysozyme mechanism sorted—after 50 years, Nature structural biology 8(9) (2001) 737-739.
    [145] X. Zhang, X. Duan, X. Liu, The role of kinases in peripheral nerve regeneration: mechanisms and implications, Frontiers in Neurology 15 (2024) 1340845.
    [146] E.L. Eskelinen, A.R. Prescott, J. Cooper, S.M. Brachmann, L. Wang, X. Tang, J.M. Backer, J.M. Lucocq, Inhibition of autophagy in mitotic animal cells, Traffic 3(12) (2002) 878-893.
    [147] E. Tasdemir, M.C. Maiuri, N. Tajeddine, I. Vitale, A. Criollo, J.M. Vicencio, J.A. Hickman, O. Geneste, G. Kroemer, Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy, Cell cycle 6(18) (2007) 2263-2267.
    [148] H. Takeya, S. Itai, H. Kimura, Y. Kurashina, T. Amemiya, N. Nagoshi, T. Iwamoto, K. Sato, S. Shibata, M. Matsumoto, Schwann cell-encapsulated chitosan-collagen hydrogel nerve conduit promotes peripheral nerve regeneration in rodent sciatic nerve defect models, Scientific reports 13(1) (2023) 11932.
    [149] H. Xuan, S. Wu, Y. Jin, S. Wei, F. Xiong, Y. Xue, B. Li, Y. Yang, H. Yuan, A Bioinspired Self‐Healing Conductive Hydrogel Promoting Peripheral Nerve Regeneration, Advanced Science 10(28) (2023) 2302519.
    [150] P. Zarrintaj, E. Zangene, S. Manouchehri, L.M. Amirabad, N. Baheiraei, M.R. Hadjighasem, M. Farokhi, M.R. Ganjali, B.W. Walker, M.R. Saeb, Conductive biomaterials as nerve conduits: recent advances and future challenges, Applied Materials Today 20 (2020) 100784.

    無法下載圖示 校內:2029-10-15公開
    校外:2029-10-15公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE