簡易檢索 / 詳目顯示

研究生: 林宜賢
Lin, Yi-Xian
論文名稱: 奈米微粒自結合技術與DNA結構特性研究
Nano-Particle Self-Assembly and DNA Structural Characterization
指導教授: 賴新一
Lai, Hsin-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 117
中文關鍵詞: DNA自結合分子動力模擬奈米微粒消光效率
外文關鍵詞: extinction efficiency, nano-particle, self-assembly, DNA, molecular dynamics simulation
相關次數: 點閱:91下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   DNA為細胞內攜帶遺傳基因的基本單位,由四種不同的鹼基排列控制人類體內健康狀態與基因行為,因此經由篩檢DNA內鹼基排列可偵測疾病與鑑定基因。隨著新藥開發與血親鑑別的需求日益增加,DNA篩檢更講求時效性與簡易性,但傳統染色與螢光篩檢方法卻有製作精度難以控制,手續複雜及成本耗費等問題,限制了基因工程的發展,所以開發操作簡便且成本低廉的DNA篩檢方法實為刻不容緩的課題。科學家將奈米微粒與探針DNA結合,利用DNA奈米微粒在分散與自結合狀態分別表現出不同的顏色差異來篩檢DNA,此方法具有快速偵測、明顯比色反應、良好的選擇性以及節省實驗器材等優點。但受限於篩檢時DNA奈米微粒自結合聚集行為複雜且反應速度快,至今仍難以一套合適的理論與實驗架構可描述與探討自結合過程。為了增進奈米微粒DNA篩檢之精確性,研究奈米微粒自結合技術與光學效應對於DNA篩檢靈敏度的影響顯得格外重要。
      有鑑於此,本文乃以DNA奈米微粒自結合技術與其光學篩檢疾病應用為研究主題。本文首先由分子力學推導DNA奈米微粒自結合勢能模型,以微觀角度分析DNA奈米微粒自結合聚集之物理規則。再根據奈米微粒極化效應,建立DNA奈米微粒光特性理論,透過光特性理論預測DNA奈米微粒之光譜變化,並歸納自結合聚集分析結果,完成光學式奈米微粒篩檢DNA結構特性判斷準則之建構,根據判斷準則提出DNA互補式與基量式病情擬合判別法。最後根據理論估算結果,提出光學式DNA奈米微粒自結合篩檢之靈敏度改善方法。
      依據本文所建構之理論估算模型預測的光譜與文獻中的實驗資料相互比對印證後,發現極為吻合,證實本文所建構的光學式DNA奈米微粒自結合篩檢理論可以準確預測DNA奈米微粒篩檢光譜變化。由實例說明本文所提之DNA互補式與基量式病情擬合判別法,確實可作為判別DNA基因突變相關疾病之篩檢依據。本文研究結果指出,這些資料既可以作為篩檢疾病之判斷基準,操作誤差校正的依據,也可作為改善DNA奈米微粒篩檢系統靈敏度的設計規範。

     DNA is the basic unit which contains gene in cells and controls the human body’s health and gene change. Therefore, one can detect diseases and identify gene by effectively screening DNA base. With the new advent in new medicine and identification of the blood relationship, faster and simpler DNA screening methods are urgently needed. There are several problems in traditional dyeing and fluorescence in DNA screening method that include (1) the precision of fabrication is difficult to control, (2) the screening process is too complex, and (3) cost is too high. These problems limit new developments in gene engineering. Therefore, it is very important to find a new DNA screening method that is simple to operate and cost effective. Some experts combine nanoparticles with probe DNA and screen DNA by different colors between the dispersal and aggregation of nanoparticles. This new approach has many advantages such as fast structure identification, clear colorimetry, fine selectivity, and less experiment equipment. Since the aggregation of the self-assembly of DNA nanoparticles is too complex, it is difficult to describe the process. Even now there is no suitable theories and experiments to prove its practicality. In order to increase the accuracy of the DNA screening system, the characterization of optical properties of the self-assembly of nanoparticles has become more and more important.
     To solve the aforementioned problem, this paper will explores and studies the self-assembly of nanoparticles and the associated optical properties that can be applied to detect human’s diseases. First, the energy approximation to the self-assembled of DNA nanoparticles is established and the employment of this approximation to analyze the physical rules of DNA self-assembly nanoparticles in micro-viewpoint is provided. Secondly, the nanopartcles polarization technique is used to establish theoretic optical structures and to forecast the optical spectrum of DNA nanoparticles. The results of self-assembly energy approximation and the complete diagnostic rules for DNA structural characterization are presented. The methods that were used to differentiate DNA complementary and measure DNA base number for diagnosing the diseases about DNA base mutation are introduced. Finally, the suggestions to improve the sensitivity of self-assembly of optical nanoparticles in DNA screening system are proposed and implemented.
     Good agreements between the computed solutions and existing data obtained from the literature indicate that the proposed theory and the modeling procedure is theoretically sound and practically applicable for computing the optical spectrum of self-assembled DNA nanoparticles screening system. Based on the results obtained from examples presented in the paper, one can realize that the proposed methods can differentiate DNA complementary and also measure DNA base number to diagnose the disease about DNA base mutation. Furthermore, the computed results are accurate enough for diagnosing the disease. The proposed error adjustment scheme for improving DNA screening process can actually promote the sensitivity for identification of the structures of self-assembled optical nanoparticles in DNA screening system.

    中文摘要…………………………………………………Ⅰ 英文摘要…………………………………………………Ⅱ 致謝………………………………………………………III 目錄………………………………………………………IV 圖目錄……………………………………………………VII 表目錄……………………………………………………X 符號說明…………………………………………………XII 第一章 緒論 1.1研究動機………………………………………………1 1.2研究目的………………………………………………4 1.3研究方法………………………………………………5 1.4章節瀏覽………………………………………………6 第二章 文獻回顧與研究流程 2.1本研究相關文獻回顧…………………………………7 2.1.1自結合勢能模型與分子動力學研究之回顧………7 2.1.2古典靜電場理論消光效率研究之回顧……………9 2.1.3 DNA奈米微粒自結合光譜研究之回顧……………10 2.2本研究基本假設與流程………………………………13 2.2.1基本假設……………………………………………13 2.2.2研究流程……………………………………………14 第三章 奈米微粒光學與自結合技術於DNA篩檢之理論模型 3.1 建構DNA奈米微粒勢能模型…………………………16 3.2以勢能模型建構自結合聚集體分子動力模擬模型…24 3.3 以自結合聚集體光譜變化建構光學DNA篩檢理論…31 3.3.1 光學式DNA奈米微粒自結合之篩檢理論總流程…31 3.3.2 由外加電場推估光學式DNA奈米微粒極化效應…32 3.3.3 由極化效應推估光學式DNA奈米微粒介電函數…35 3.3.4 由介電函數推估光學式DNA奈米微粒之消光光譜39 3.3.5以消光光譜推估光學DNA奈米微粒自結合篩檢光譜41 3.4以光學DNA篩檢理論建立互補式與基量式病情擬合判別法44 3.4.1 互補式DNA奈米微粒自結合病情擬合判別法……44 3.4.2 基量式DNA奈米微粒自結合病情擬合判別法……49 第四章 奈米微粒自結合DNA篩檢之數值模擬與結果印證 4.1 DNA奈米微粒自結合聚集體之分子動力模擬結果…53 4.2光學式DNA奈米微粒自結合篩檢理論與文獻資料之比對63 4.3 光學式DNA奈米微粒自結合篩檢理論分析與印證…69 4.3.1 互補式DNA奈米微粒自結合篩檢光譜預估與印證69 4.3.2 基量式DNA奈米微粒自結合篩檢光譜預估與印證75 4.4以互補式與基量式病情擬合判別法判斷可能病源與病因81 4.5 光學式DNA奈米微粒篩檢靈敏度之改善設計………90 第五章 結論與建議 5.1結論……………………………………………………97 5.2建議……………………………………………………99 參考文獻…………………………………………………100 附錄A DNA基本組成與篩檢原理………………………102 附錄B 傳統篩檢過程與其製造方法……………………109 附錄C 奈米微粒自結合原理與其在工業及醫療之應用112 附錄D光學式奈米微粒自結合在DNA篩檢之應用………114 附錄E 奈米微粒篩檢DNA與傳統篩檢DNA方法之比較…116

    1.Draine, B.T., Goodman, J., “Beyond Clausius-Mossotti: Wave Propagation on the Polarizable Point Lattice and the Discrete Dipole Approximation,” The Astrophysical Journal, Vol. 405, pp. 685-697, 1993.

    2.Taton, T.A., Mirkin, C.A., Letsinger, R.L., “Scanometric DNA Array Detection with Nanoparticle Probes,” Science, Vol. 289, No. 8, pp. 1757-1760, 2000.

    3.Purcell, E.M., Pennypacker, C.R., “Scattering and Absorption of Light by Nonspherical Dielectric Grains,” The Astrophysical Journal, Vol. 186, pp. 705-714, 1973.

    4.Lazarides, A.A., Schatz, G.C., “DNA-Linked Metal Nanosphere Materials: Fourier-Transform Solutions for the Optical Response,” Journal of Chemical Physics, Vol. 122, No. 6, pp. 2987-2993, 2000.

    5.Mirkin, C.A., Letsinger, R.L., Mucic, R.C., “A DNA-Based Method for Rationally Assembling Nanoparticles into Macroscopic Materials,” Nature, Vol. 382, No. 15, pp. 607-608, 1996.

    6.Alivisatos, A.P., Johnson, K.P., Wilson, T.E., “Organization of ‘Nanocrstal Molecules’ Using DNA,” Nature, Vol. 382, No. 15, pp. 609-611, 1996.

    7.Lazarides, A.A., Schatz, G.C., “DNA-Linked Metal Nanosphere Materials: Structural Basis for the Optical Properties,” The Journal of Physical Chemistry B, Vol. 104, pp. 460-467.

    8.Draine, B.T., “The Discrete-Dipole Approximation and its Application to Interstellar Graphite Grains,” The Astrophysical Journal, Vol. 333, pp. 848-872, 1988.

    9.Mulvaney, P., “Surface Plasmon Spectroscopy of Nanosized Metal Particles,” Langmuir, Vol. 12, pp. 788-800, 1996.

    10.Draine, B.T., Flatau, P.J., “Discrete-Dipole Approximation for Scattering Calculations,” Journal of the Optical Society of America A, Vol. 11, No. 4, pp. 1491-1499, 1994.

    11.Demers, L.M., Mirkin, C.A., Mucic, R.C., Reynolds, R.A., “A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles,” Analytical chemistry, Vol. 72, pp. 5535-5541, 2000.

    12.Lazarides, A.A., Kelly, K.L., Schatz, G.C., “Effective
    Medium Theory of DNA-Linked Gold Nanoparticle Aggregates: Effect of Aggregate Shape,” Proceedings of Materials Research Society Symposium, Vol. 635, pp.C6.5.1-C6.5.10.

    13.Schatz, G.C., “Electrodynamics of Nonspherical Noble Metal Nanoparticles and Nanoparticle Aggregates,” Journal of Molecular Structure, Vol. 573, pp. 73-80, 2001.

    14.Lazarides, A.A., Kelly, K.L., Jensen, T.R., Schatz, G.C., “Optical properties of Metal Nanoparticles and Nanoparticle Aggregates Important in Biosensors,” Journal of Molecular Structure, Vol. 529, pp. 59-63, 2000.

    15.Ohara, P.C., Leff, D.V., Heath, J.R., Gellbart, W.M., “Crystallization of Opals from Polydisperse Nanoparticles,” Physical Review Letters, Vol. 75, No. 19, pp.3466-3469, 1995.

    16.Rahman, A., Parrinello, M., “Crystal Structure and Pair Potentials: A Molecular-Dynamics Study,” Physical Review Letters, Vol. 45, No. 14, pp. 1196-1199, 1980.

    17.Storhoff, J.J., Lazarides, A.A., Mucic, R.C., Mirkin, C.A., Letsinger, R.L., Schatz, G.C., “What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies,” Journal of the American Chemical Society, Vol. 122, pp. 4640-4650, 2000.

    18.Hamaker, H.C., “The London-Van Der Waals Attraction between Spherical Particles,” Physica, Vol. 23, No. 10, pp.1059-1072, 1937.

    19.Huffman, D.R., Bohren, C.F., “Absorption and Scattering of Light by Small Particles,” John Wiley & Sons, 1983.

    20.Lide, D.R., “CRC Handbook of Chemistry and Physics 74th,”CRC Press: Boca Raton, FL; pp. 12-113, 1993.

    21.Sadus, R.J., “Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation,” Elsevier, New York, 1999.

    22.Jackson, J. D., “Classical electrodynamics,”Wiley, New York, 1975.

    23.陳俊顯, “以奈米微粒篩檢特定鹼基序列之DNA,” 自然科學簡訊第十三卷第二期, pp. 55-57, 2001.

    24.張仕欣, 王崇人, “金屬奈米粒子的吸收光譜,” 化學, 第五十六卷第三期, pp.209-222, 1998

    25.瞿建富, 張絲珍, 廖辰中, “醫護 生物化學,” 五南圖書出版社, 台灣, 2000.

    26.李建雄, 端木梁, 翁郁嘉, 黃淑姿, “生物化學,” 藝軒圖書出版社, 台灣, 1989.

    下載圖示 校內:2007-07-26公開
    校外:2007-07-26公開
    QR CODE