簡易檢索 / 詳目顯示

研究生: 陳宥翔
Chen, Yu-Hsiang
論文名稱: 可控制壓力分佈的奈米壓印技術與軟性光罩的曲面黃光微影製程
Nano-Imprinting with Controllable Contact Pressure Distribution and Photolithography on Curved Surface Based on Soft Photomask
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 188
中文關鍵詞: UV奈米壓印光阻殘留層奈米結構PFPE複合模具黑光阻嵌入式軟性光罩
外文關鍵詞: UV-cured nano-imprinting, residual layer thickness, nano-structures with gradually varying structural height, PFPE composite mold, black photoresist embedded soft mask
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主題為紫外光 (UV) 固化之奈米壓印微影技術,主要設計不同曲面的軟性矽膠 (PDMS) 撓性模具為基礎,搭配使用高分子材料醛氟聚醚 (Perfluoropolyethers, PFPE) 的壓印模仁,並與以鳩尾環固定之平面PDMS模仁形成一複合模具進行壓印。此一PFPE高分子材料可輕易從傳統矽模仁中翻製出線寬100 nm以下的奈米結構,且收縮率低於0.1%,在壓印製程上具有快速且可常溫操作之優點。根據設計不同曲面之可撓式模具,不僅能以圓形軸對稱擴散的方式施壓,也能產生一壓力梯度驅動UV阻劑向外運動,此壓印方法透過結果證明不僅能在細部上可以有效的控制殘留層厚度之外,也能成功製作出具漸變高度的阻劑結構。
    實驗中同時利用壓力感測器 (Pressure Sensing System) 量測在基板間以不同曲面模具在壓印時的實際接觸壓力分佈,再由大量的實驗結果與過程中各階段的壓力分佈,可了解在壓力梯度的驅趕下對光阻結構與流動性影響的重要性。本文成功在四吋矽基板上製作出線寬160 nm、週期300 nm、具有漸變高度之奈米級結構,證實PFPE為一良好的壓印模具材料與此一奈米壓印製程的可行性,未來將有機會可應用於光電產業中所需之漸變結構的背光模組。
    此外,本研究延伸此奈米壓印技術,成功製作最小線寬20 μm之接近六吋之黑光阻嵌入式任意圖形軟性光罩,先搭配一平行紫外光源於兩吋曲面基板上完成任意微結構製作,再利用掀離製程完成金屬任意圖形製作,此一實驗證實軟性光罩能夠有效貼附於曲面基板上製作任意圖形,最後也充分實現本文所發展之奈米壓印技術於奈米尺寸結構製作與黑光阻任意圖形軟性光罩之可行性與應用的潛力。

    This research focuses on ultraviolet (UV) curing nanoimprint soft lithography based on the design of flexible PDMS molds. Combining the polymer Perfluoropolyethers (PFPE) with a plane PDMS mold embedded in a dovetail ring, a composite mold for imprinting is prepared. The PFPE mold can be replicated from a silicon mother mold with a line-width less than 100 nm and a shrinkage rate less than 0.1%. Fast UV nano-imprinting at room temperature can be realized. By designing flexible molds with different curvature, it not only allows applying pressure in a circularly axisymmetric manner but also generates a pressure gradient to drive the UV-curable resist to flow outward. The proposed imprinting method can achieve not only controllable residual layer thickness but also gradually varying structural height.
    In the experiment, a pressure sensor (Pressure Sensing System) was used to measure the actual contact pressure distribution using different curved molds between the substrates during imprinting. Based on a lot of experimental results, we can understand the influence of the designed surface profiles and the resulted pressure distribution on the imprinted nano-structures. This work successfully fabricated nano-structures with a linewidth of 160 nm, a period of 300 nm, and a gradual structure height on a 4” silicon substrate. It proves that PFPE is a good imprinting mold material as well as the feasibility of this nanoimprinting process. In the future, it can be applied to backlight modules with nano-structures having gradually varying structural height required in the optoelectronic industry.
    In addition, this research extends this nano-imprint technology and successfully fabricated a 6” black-photoresist embedded soft mask with a minimum linewidth of 20 μm, which allows photolithography patterning on a curved surface. As an example, metallic patterns are successfully produced on a 2” and curved plano-convex lens substrate using the black-photoresist embedded soft mask and standard lift-off processes. It extends the application of photolithography from planar substrates to curved ones, and numerous applications can be expected.

    摘要 I Abstract III 圖目錄 XXVI 表目錄 XXXII 第一章 緒論 1 1.1 前言 1 1.2 研究回顧 3 1.2.1熱壓成形奈米壓印 4 1.2.2步進感光成形奈米壓印 5 1.2.3軟微影技術 6 1.2.4金屬轉印技術 7 1.2.5雷射輔助式直寫式壓印技術 9 1.2.6金屬鑲入式石英光罩 10 1.2.7金屬鑲入式軟性光罩 12 1.2.8旋塗式黑光阻嵌入式軟性光罩 13 1.3論文架構 16 第二章 壓印系統與曲面模仁設計實驗架構 18 2.1 製程設備簡介 18 2.1.1 壓印機構設計 19 2.1.2 壓印系統控制介紹 23 2.1.3 曲面PDMS模仁設計與制備 26 2.2 壓力分佈分析 30 2.2.1 壓力分佈量測系統介紹 30 2.2.2不同曲面壓印之壓力分佈量測 33 第三章 以不同曲面撓性模仁之奈米結構壓印製程 41 3.1 前言 41 3.2 壓印模仁制備 41 3.2.1 壓印模仁制備 42 3.2.2 軟模材料選用 49 3.2.3 可撓式複合模具制備 52 3.3 三種曲面以不同壓力之壓印結果比較與分析 56 3.3.1 UV型壓印阻劑膜厚分析 57 3.3.2 奈米結構壓印結果比較 62 3.3.3三種曲面模仁在無結構與有結構壓印下對膠材流動的影響 82 第四章 黑光阻嵌入式任意圖形軟性光罩製作 86 4.1 前言 86 4.2 壓印模仁備製 87 4.2.1光罩設計與矽模仁製作 87 4.2.2平面PDMS軟性模仁制備 93 4.3 平面軟性 PDMS 模仁與基板表面改質 100 4.4 黑光阻嵌入式任意圖形軟性光罩製作 104 4.4.1碳黑光阻劑介紹 104 4.4.2軟性光罩製作之壓印製程 106 4.4.3 黑光阻填滿結構尺寸深度量測 112 4.5 黑光阻嵌入式任意圖形軟性光罩曲面基板曝光結果 117 4.5.1 曝光顯影製程 117 4.5.2 曝光顯影結果 120 4.6 曲面基板掀離製程結果 125 4.6.1 掀離製程 126 4.6.2 掀離結果 127 第五章 結論與未來展望 134 5.1 結論 134 5.2 未來展望 135 參考文獻 137 附錄一 140 附錄二 183

    [1] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprinting Lithography with 25 Nanometer Resolution,” Science, vol. 272, no. 5258, pp. 85-87, 1996.
    [2] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint Lithography,” Journal of Vacuum Science & Technology B : Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 6, pp. 4129-4133, 1996.
    [3] M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, M.Wedlake, T. B. Michaelson, S.V. Sreenivasan, J. G. Ekerdt, and C. G. Willson, “Step and Flash Imprint Lithography : A New Approach to High-Resolution Patterning,” Microlithograhy ‘99, Santa Clara, California, USA, Jul. 26, 1999.
    [4] Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, “Non-Photolithographic Methods for Fabrication of Elastomeric Stamps for Use in Microcontact Printing,” Langmuir, vol. 12, no. 16, pp. 4033-4038, 1996.
    [5] C.-Y. Chiu and Y.-C. Lee, “Micro-/Nano-Lithography Based on the Contact Transfer of Thin Film and Mask Embedded Etching,” Journal of Micromechanics and Microengineering, vol. 18, no. 7, pp. 075013, 2008.
    [6] Y.-T. Hsieh and Y.-C. Lee, “Nonaimprint and Metal Contact Printing Technology for Enhancing Light Extraction of LED’s Efficiency,” M.S. Thesis, Department of Mechanical Engineering, Cheng Kung University, Tainan, Taiwan, 2000.
    [7] M. R. Krames et al., “High-Power Truncated-Inverted-Pyramid (Al x Ga 1− x) 0.5 In 0.5 P/GaP Light-Emitting Diodes Exhibiting > 50 % External Quantum Efficiency,” Applied Physics Letters, vol. 75, no. 16, pp. 2365-2367, 1999.
    [8] J.-N. Yan, C.-W. Chang and Y.-C. Lee, “A Metal-Embedded Photo-Mask for Contact Photolithography with Application on Patterned Sapphire Substrate,” Microelecronic Engineering, vol. 122, no.25, pp. 20-24, 2014.
    [9] J.-N. Yan and Y.-C. Lee, “Fabrication of Metal Embedded Photo-Mask for Submicrometer Scaled Photolithography and Patterning Sapphire Substrate,” IEEE Conference on Nano/Micro Engineered and Molecular System, Kyoto, Japan, Mar. 5-8, 2012.
    [10] J.-N Yan and Y.-C Lee, “Metal Embedded Photo-mask for Sub-Micrometer Scaled Photolithography and Fabrication of Patterned Sapphire Substrate,” M.S. Thesis, Department of Mechanical Engineering, Cheng Kung University, Tainan, Taiwan, 2012.
    [11] Y.-T. Hsieh and Y.-C. Lee, “A Soft PDMS/Metal-Film Photo-Mask for Large-Area Contact Photolithography Sub-Micrometer Scale With Application Patterned Sapphire Substrates,” Journal of Microelectromechanical System, vol. 23, no. 3, pp. 719-726, 2014.
    [12] Y.-T. Hsieh and Y.-C. Lee, “Soft-Mask Lithography with Application in Manufacturing Pattern Sapphire Substrate,” M.S. Thesis, Department of Mechanical Engineering, Cheng Kung University, Tainan, Taiwan, 2014.
    [13] Y.-Z. Chen and Y.-C. Lee, “Been Pen Lithography Based on Arrayed Polydimethylsiloxane (PDMS) Micro-Pyramids Spin-Coated with Carbon Black Photoresist,” Journal of Micromechanics and Microengineering, vol. 24, no. 4, p. 045007, 2014.
    [14] Y.-R. Chen and Y.-C. Lee, “Spin-coating of Black Photo-resist for Fabricating Three-Dimensional Photo-mask and Sub-Micrometer Scaled Photolithography,” M.S. Thesis, Department of Mechanical Engineering, Cheng Kung University, Tainan, Taiwan, 2013.
    [15] Y.-C. Lee, Y.-T. Hsieh and H. Hsieh, “A Soft Photo-Mask with Embedded Carbon Black and Its Application in Contact Photolithography,” Journal of Micromechanics Microengineering, vol. 24, no. 8, p. 085006, 2014.
    [16] P.-C Tu and Y.-C. Lee, “Nano-Imprinting and Black Photoresist Embedded Soft Mask Lithography for Micro/Nano-Fabrication,” M.S. Thesis, Department of Mechanical Engineering, Cheng Kung University, Tainan, Taiwan, 2019.
    [17] 半導體晶圓廠的清潔劑,三聯科技股份有限公司/張和裕
    [18] K. Mogi, Y. Hashimoto, T. Tsukahara, M. Terano, M. Yoshino and T. Yamamoto, “Nanometer-Level High-Accuracy Molding Using a Photo-Curable Silicone Elastomer by Suppressing Thermal Shrinkage”, RCS Advances, vol. 5, no. 14, pp. 10172-10177, 2015.
    [19] N. Chidambaram, R. Kirchner, M. Altana, and H. Schift, “High Fidelity 3D Thermal Nanoimprint with UV Curable Polydimethyl Siloxane Stamps,” Journal of Vacuum Science & Technology B, vol. 34, no. 6, 2016.
    [20] H.-H Lin and C.-H Lin, “Direct imprinting on flexible substrate by using flexible nanopatterned mold,” M.S. Thesis, Department of Photonics, Cheng Kung University, Tainan, Taiwan, 2012.
    [21] 林松香、張德宜、趙希德、李榮哲,「高遮光係數黑色矩陣」,工業材料雜誌3月號,https://www.materialsnet.com.tw/。

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE