簡易檢索 / 詳目顯示

研究生: 謝詠淨
Hsieh, Yung-Ching
論文名稱: 氧化鋅-還原型氧化石墨烯複合材料薄膜於室溫下感測二氧化氮氣體之研究
Investigation of NO2 Gas Sensors with Zinc Oxide-Reduced Graphene Oxide Composite Films at Room Temperature
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 74
中文關鍵詞: 二氧化氮氣體感測器室溫氧化鋅還原型氧化石墨烯
外文關鍵詞: NO2 gas sensor, room temperature, ZnO, rGO
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究主要探討氧化鋅-還原型氧化石墨烯複合材料薄膜應用於室溫下感測二氧化氮氣體,首先使用旋轉塗佈法製備氧化鋅-氧化石墨烯複合材料薄膜,接著利用退火熱處理形成氧化鋅-還原型氧化石墨烯複合材料薄膜,其製程方式簡單以及擁有低成本之優勢。藉由改變摻雜氧化鋅的含量,改善氣體感測器之響應度。由實驗結果得知,摻雜比例為ZnO/GO=0.08的氧化鋅-還原型氧化石墨烯氣體感測器在室溫下對二氧化氮氣體擁有最佳響應度,當二氧化氮氣體濃度為100 ppm時,其響應度為45%,摻雜比例為ZnO/GO=0.08的氧化鋅-還原型氧化石墨烯氣體感測器在室溫下量測不同濃度二氧化氮時,亦具備良好的線性趨勢、響應時間、恢復時間以及氣體選擇性之優點,當退火時間增加至2小時,其在室溫下對100 ppm 二氧化氮之響應度為48%。

    In this study, the high performances room temperature nitrogen dioxide (NO2) gas sensors were fabricated using zinc oxide-reduced graphene oxide (ZnO-rGO) composite films as sensing materials. The ZnO-rGO composite films were synthesized by annealing the zinc oxide-graphene oxide (ZnO-GO) composite films in Ar flow at 300℃ for 1 h which were prepared by spin-coating. Moreover, the ZnO-rGO composite films possessed several advantages, including easy fabrication and low cost. By varying the doping amount of ZnO, the response of gas sensors would be enhanced. According to the experimental results, the gas sensors using ZnO-rGO composite films which the weight ratio (ZnO/GO) was 0.08 as sensing materials exhibited the better NO2 sensing response at room temperature. The ZnO-rGO gas sensors (ZnO/GO=0.08) exhibited the sensing response of 45% under 100 ppm NO2 gas. Moreover, the ZnO-rGO gas sensors (ZnO/GO=0.08) which annealed in Ar flow at 300℃ for 2 h and 3 h possessed the gas response of 48% and 42% under 100 ppm NO2. The performances of the ZnO-rGO gas sensors (ZnO/GO=0.08) sensing different concentration of NO2 at room temperature not only had good linearly curve but also exhibited other advantages such as good response time, recovery time, and selectivity.

    摘要.........................................................II Abstract....................................................III 致謝.......................................................VIII 目錄..........................................................X 表目錄.....................................................XIII 圖目錄......................................................XIV 第一章 序論..................................................1 1.1前言.......................................................1 1.2氣體感測器簡介.............................................1 1.3研究動機...................................................3 第二章 基本理論與文獻回顧....................................7 2.1石墨烯.....................................................7 2.1.1石墨烯之特性.............................................7 2.1.2石墨烯之製備方法.........................................8 2.2氧化鋅....................................................10 2.2.1氧化鋅之特性............................................10 2.2.2氧化鋅之製備方法........................................11 2.3氣體感測器................................................12 2.3.1氣體感測器的分類........................................13 2.3.2半導體吸附式氣體感測器之感測原理........................15 2.3.3石墨烯氣體感測器之感測原理..............................17 第三章 實驗方法與步驟.......................................26 3.1實驗藥品..................................................26 3.2元件製程步驟..............................................26 3.2.1溶液配置................................................27 3.2.2基板清潔................................................28 3.2.3旋轉塗佈法覆膜..........................................28 3.2.4退火熱處理..............................................29 3.2.5蒸鍍電極................................................29 3.3性質分析與元件量測........................................30 3.3.1傅立葉轉換紅外光譜儀(FTIR)..............................30 3.3.2 X射線光電子能譜儀(XPS).................................30 3.3.3半導體元件參數量測儀(HP 4145B)..........................31 3.3.4微加熱器................................................32 第四章 實驗結果與討論.......................................36 4.1以傅立葉轉換紅外光譜儀(FTIR)分析薄膜的性質................36 4.2以X射線光電子能譜儀(XPS)分析薄膜的性質....................36 4.3氧化鋅氣體感測器對二氧化氮氣體之感測特性..................39 4.4還原型氧化石墨烯氣體感測器在室溫下對二氧化氮氣體之感測特性 .............................................................40 4.5氧化鋅-還原型氧化石墨烯氣體感測器在室溫下對二氧化氮氣體之感測特性.......................................................42 4.5.1氧化鋅-還原型氧化石墨烯氣體感測器在室溫下對不同濃度二氧化氮重複性量測之探討...........................................42 4.5.2氧化鋅-還原型氧化石墨烯氣體感測器在室溫下響應度與二氧化氮濃度關係之探討...............................................44 4.5.3氧化鋅-還原型氧化石墨烯氣體感測器在室溫下對二氧化氮氣體之靈敏度探討...................................................45 4.6摻雜比例為ZnO/GO=0.08的氧化鋅-還原型氧化石墨烯氣體感測器在室溫下對二氧化氮響應時間與恢復時間之探討.......................46 4.7摻雜比例為ZnO/GO=0.08的氧化鋅-還原型氧化石墨烯氣體感測器在室溫下對氣體之選擇性探討.......................................47 4.8增加退火時間之摻雜比例為ZnO/GO=0.08的氧化鋅-還原型氧化石墨烯氣體感測器在室溫下對二氧化氮氣體之感測特性...................48 第五章 結論.................................................65 參考文獻.....................................................67

    [1]蔡嬪嬪、曾明漢, “氣體感測器之簡介、應用及市場”, 材料與社會, vol. 68, 1992.
    [2]周政毅, “節能型可攜式多通道感測系統”, 中國文化大學應用化學研究所, 2010.
    [3]A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Lett., vol. 8, pp. 902-907, 2008.
    [4]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, vol. 306, pp. 666-669, 2004.
    [5]K. I. Bolotina, K. J. Sikesb, Z. Jianga, M. Klimac, G. Fudenberga, J. Honec, P. Kima, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene”, Solid State Communication, vol. 146, pp. 351-355, 2008.
    [6]蕭慕柔, “電解剝落法之石墨表面性質探討”, 國立中央大學化學工程與材料工程學系, 2012.
    [7]N. D. Mermin, “Crystalline order in two dimensions”, Phys. Rev., vol. 176, pp. 250-254, 1968.
    [8]A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nature Materials, vol. 6, pp. 183-191, 2007.
    [9]R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene”, Science, vol. 320, pp. 1308, 2008.
    [10]S. Park and R. S. Rouff, “Chemical methods for the production of graphenes”, Nature Nanotechnology, vol. 4, pp. 217-224, 2009.
    [11]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, “Electronic confinement and coherence in patterned epitaxial graphene”, Science, vol. 312, pp. 1191-1196, 2006.
    [12]F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”, Nature Materials, vol. 6, pp. 652-655, 2007.
    [13]H. Bai, C. Li, and G. Shi, “Functional composite materials based on chemically converted graphene”, Advanced Materials, vol. 23, pp. 1089-1115, 2011.
    [14]D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R. D. Piner, S. Stankovich, I. Jung, D. A. Field, C. A. Ventrice Jr., and R. S. Ruoff, “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy”, Carbon, vol. 47, pp. 145-152, 2009.
    [15]J. I. Pankove, “Optical progress in semiconductors”, Dover Publications, New York, 1975.
    [16]H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, “Semiconducting transparent thin films”, IOP Publishing, Bristol, 1995.
    [17]R. Wang, L. H. King, and A. W. Sleight, “Highly conducting transparent thin films based on zinc oxide”, J. Mater. Res., vol. 11, pp. 1659-1664, 1996.
    [18]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, “Recent progress in processing and properties of ZnO”, Progress in Materials Science, vol. 50, pp. 293-340, 2005.
    [19]P. Nunes, D. Costa, E. Fortunato, and R. Martins, “Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering”, Vacuum, vol. 64, pp. 293-297, 2002.
    [20]Y. Igasaki and H. Saito, “The effects of zinc diffusion the electrical and optical properties of ZnO:Al films prepared by r.f. reactive sputtering”, Thin Solid Films, vol. 199, pp. 223-230, 1991.
    [21]M. T. Young and S. D. Keun, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In films”, Thin Solid Films, vol. 410, pp. 8-13, 2002.
    [22]D. G. Baik and S. M. Cho, “Application of sol-del derived films for ZnO/n-Si junction solar cells”, Thin Solid Films, vol. 354, pp. 227-231, 1999.
    [23]H. W. Ryua and B. S. Park, “ZnO sol-gel derives porous film for CO gas sensing”, Sens. Actuators B, vol. 96, pp. 717-722, 2003.
    [24]B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition”, Thin Solid Films, vol. 366, pp. 107-110, 2000.
    [25]M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, “Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD)”, Thin Solid Films, vol. 403-404, pp. 485-488, 2002.
    [26]B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation”, Appl. Phys. Lett., vol. 81, pp. 757-759, 2002.
    [27]P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr., “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering”, Appl. Phys. Lett., vol. 82, pp. 1117-1119, 2003.
    [28]S. Ilican, Y. Caglar, and M. Caglar, “Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method”, J. Optoelectron. Adv. Mater., vol. 10, pp. 2578-2583, 2008.
    [29]溫智富, “具垂直/水平氧化鎢奈米線之感測器結構製備及其應用於NO2氣體感測特性之研究”, 國立成功大學微電子所, 2006.
    [30]J. Wang, “Electrochemical sensing of explosives”, Electroanalysis, vol. 19, pp. 415-423, 2007.
    [31]C. H. Han, D. W. Hong, I. J. Kim, J. Gwak, S. D. Han, and K. C. Singh, “Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor”, Sens. Actuators B, vol. 128, pp. 320-325, 2007.
    [32]Z. Fan, D. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, “ZnO nanowire field-effect transistor and oxygen sensing property”, Appl. Phys. Lett., vol. 85, pp. 5923-5925, 2004.
    [33]馬志欽, “人類嗅覺的延伸-電子鼻”, 科學月刊, vol. 351, pp. 15-21, 1999.
    [34]S. Lenaerts, J. Roggen, and G. Maes, “FT-IR characterization of tin oxide gas sensor materials under working conditions”, Spectrochim. Acta, vol. 51A, pp. 883-894, 1995.
    [35]I. Masamichi and S. Hirokazu, “Sensing mechanism of SnO2 gas sensors”, J. Mater. Sci., vol. 25, pp. 259-262, 1990.
    [36]M. Takata, D. Tsubone, and H.Yanagida, “Dependence of electrical conductivity of ZnO on degree of sensing”, J. Am. Ceram. Soc., vol. 59, pp. 4-8, 1976.
    [37]A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, “NOX sensors based on semiconducting metal oxide nanostructures: Progress and perspectives”, Sens. Actuators B, vol. 171-172, pp. 25-42, 2012.
    [38]O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study”, Phys. Rev. B, vol. 77, pp. 125416-1-125416-6, 2008.
    [39]B. Huang, Z. Li, Z. Liu, G. Zhou, S. Hao, J. Wu, B. L. Gu, and W. Duan, “Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor”, J. Phys. Chem. C, vol. 112, pp. 13442-13446, 2008.
    [40]G. Lu, L. E. Ocola, and J. Chen, “Reduced graphene oxide for room-temperature gas sensors”, Nanotechnol., vol. 20, pp. 445502-44510, 2009.
    [41]S. Peng, X. Fan, S. Li, and J. Zhang, “Green synthesis and characterization of graphene oxide by orthogonal experiment”, J. Chil. Chem. Soc., vol. 58, pp. 2213-2217, 2013.
    [42]Sudesh, N. Kumar, S. Das, C. Bernhard, and G. D. Varma, “Effect of grapheme oxide doping on superconducting properties of bulk MgB2”, Supercond. Sci. Technol., vol. 26, pp. 095008-095015, 2013.
    [43]J. Yang, Y. Wang, J. Wang, and M. B. Chan-Park, “Reducing graphene oxide with a modified Birch reaction”, RSC Adv., vol. 5, pp. 11124-11127, 2015.
    [44]V. H. Pham, T. V. Cuong, S. H. Hur, E. Oh, E. J. Kim, E. W. Shin, and J. S. Chung, “Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone”, J. Mater. Chem., vol. 21, pp. 3371-3377, 2011.
    [45]E. Oh, H. Y. Choi, S. H. Jung, S. Cho, J. C. Kim, K. H. Lee, S. W. Kang, J. Kim, J. Y. Yun, and S. H. Jeong, “High-performance NO2 gas sensor based on ZnO nanorod grown by ultrasonic irradiation”, Sens. Actuators B, vol. 141, pp. 239-243, 2009.
    [46]J. T. Robinson, F. K. Perkins, E.S. Snow, Z. Wei, and P. E. Sheehan, “Reduced graphene oxide molecular sensors”, Nano Lett., vol. 8, pp. 3137-3140, 2008.
    [47]彭成基, “低溫水溶液法合成氧化鋅奈米柱之發光二極體”, 國立臺灣師範大學光電科技研究所, 2008.
    [48]吳泉毅、楊宗燁、林鴻明, “奈米半導體材料之氣體感測性質”, 物理雙月刊, vol. 25, pp. 35-45, 2003.
    [49]F. Yavari, E. Castillo, H. Gullapalli, P. M. Ajayan, and N. Koratkar, “High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene”, Appl. Phys. Lett., vol. 100, pp. 203120-1-203120-4, 2012.

    無法下載圖示 校內:2021-08-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE