簡易檢索 / 詳目顯示

研究生: 何博文
He, Bo-Wen
論文名稱: 具氮化鎵覆蓋層於改善氧化銦鎵鋅薄膜電晶體紫外光感測性能之模擬分析
Simulation analysis of ultraviolet light sensing performance of In-Ga-Zn-O thin film transistors with GaN capping layer
指導教授: 王水進
Wang, Shui-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 143
中文關鍵詞: 氧化銦鎵鋅氮化鎵薄膜電晶體氮化鎵覆蓋層覆蓋層異質接面紫外光感測器光響應度靈敏度偵測度Sentaurus TCAD
外文關鍵詞: Thin film transistors (TFTs), Capping layer, Ultraviolet photodetectors (UV-PDs), Sentaurus TCAD, Heterojunction
相關次數: 點閱:63下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技進步所伴隨的環境破壞,臭氧層破洞增加了地面的紫外線輻射,目前科技界已發展出許多種類的紫外光感測器(UV-photodetectors, UV-PDs)以供應偵測及其他各種應用。由於以非晶氧化物半導體(AMOS)為通道基材之薄膜電晶體(thin film transistor, TFT)具有高載子移動率、低成本、低溫製程及大面積沉積等優勢,已成為熱門研究與開發目標。而利用p型半導體或蕭基金屬之覆蓋層(capping layer, CL)於背通道表面上形成異質接面,提供通道額外的空乏區,可於增加通道厚度提升光電流下仍可維持低暗電流,進一步提升IGZO TFT之光電特性,亦已見推廣於UV-PD之開發。
    本論文旨在進行具p型氮化鎵(p-GaN)覆蓋層(capping layer, CL)氧化銦鎵鋅(IGZO) TFT之模擬分析,深入探討p-GaN CL於提升光感測性能之效益。本論文利用半導體元件模擬軟體(Sentaurus TCAD)進行模擬分析,透過其中之元件結構編輯器(Sentaurus Structure Editor, SDE)設定元件結構參數,如閘極金屬功函數、氧化層材料、通道厚度及覆蓋層長度等,並藉元件模擬器(Sentaurus Device, SDVICE)加入物理模型,如費米-狄拉克統計模型(Fermi-Dirac statistics)、SRH複合、歐傑複合及界面與內部缺陷等,進行電性模擬;元件照光則使用OptBeam模式進行照光參數設定。於本研究中,將具傳統下閘極結構之IGZO TFT命名為Type A TFT,具p-GaN CL之IGZO TFT則稱為Type B TFT。
    本論文之研究內容計分為「不同元件結構參數對Type A TFT光感測性能影響之探討」、「具較適化元件結構參數於Type A TFT之光感測性能分析」、「覆蓋層結構參數對Type B TFT光感測性能影響之探討」及「具較適化結構覆蓋層參數於Type B TFT之光感測性能分析」等四個部分,茲依序簡述如下:
    於「不同元件結構參數對Type A TFT光感測性能影響之探討」之模擬分析研究上,藉由調變通道厚度與摻雜濃度(Tch與Nch)及閘極金屬功函數(ϕm)之模擬結果顯示,通道厚度較薄(Tch=30 nm)與閘極金屬功函數適中(ϕm=5.0 V)之IGZO TFT於熱平衡下可達到全空乏狀態,具最低之截止電流(即暗電流)Ioff (4.25×10^-11 A⁄μm)與最高之開關電流比(Ion⁄Ioff =8.30×10^6 )。於照光下,Tch越厚者因有更多光生載子生成空間,因此具較佳之光感測性能。較低通道濃度(Nch=10^16 cm^-3 )之TFT,雖有最低之Ioff (2.93×10^-11 A⁄μm)與最低之SS(64.74 mV⁄dec),乃因呈現過度的全空乏狀態。隨Nch提高,通道電位升高使光生載子因空乏區電場作用力趨至背通道表面提高光電流之效益增強,造成光感測性能提升。根據模擬所得結果顯示,Tch為30 nm、Nch為10^17 cm^-3及ϕm為5.0 V應可視為Type A TFT之較適化結構參數。
    於「具較適化元件結構參數於Type A TFT之光感測性能分析」之模擬研究上,係先利用厚度為30 nm、濃度為10^17 cm^-3之n-IGZO光導體元件掌握不同入射光波長對n-IGZO光導體元件之光響應特性。於具較適化結構參數於Type A TFT光響應特性之模擬結果顯示,隨入射光波長越短,其通道載子濃度隨之上升、通道層電位降增大,導致光響應度(Rph )、靈敏度(Sph )與偵測度(D^* )皆有所提升。於入射光功率(Pin )為50 mW⁄cm^2 之250 nm紫外光波段照射下,Type A TFT之Rph、Sph及D^*分別為1.46 A⁄W、1.77×10^2 A⁄A 與12.7×10^8 Jones。
    於「覆蓋層結構參數對Type B TFT光感測性能影響之探討」之模擬研究上,係於具較適化元件結構Type A TFT之通道層上方浮蓋一p-GaN覆蓋層所形成之Type B TFT為主。所形成p-GaN/n-IGZO異質接面(heterojunction, HJ)於背通道形成一額外的空乏區,允許於採用較厚的通道下仍可維持全空乏狀態,可在提升光電流Iph下抑制Ioff的增加。於探尋較適化之覆蓋層結構參數上,經分別調變LCL、NCL及TCL之模擬結果顯示,具較長的覆蓋層長度(LCL=0.8 μm)、較高的通道摻雜濃度(NCL=10^17 cm^-3)與較厚的CL厚度(TCL=200 nm)之Type B TFT於熱平衡下可達到全空乏狀態,可擁有最低之Ioff (4.06×10^-11 A⁄μm)與最高之開關電流比(Ion⁄Ioff =6.90×10^6 )。於照光下,隨LCL增大,不僅背通道表面空乏範圍越大、抑制漏電流之能力愈強,亦增加照光面積提高光感測性能。而較小的NCL,因其通道空乏的能力較弱,導致Vth及Von負移,造成Ioff與SS增大,使光靈敏度(Sph)及偵測度下降,但因背通道具較大空乏區,使較多光生載子推入通道使光響應度增加。當TCL減小,因覆蓋層空乏區內部電荷量降低,於背通道建立的額外空乏區寬度範圍減少,因而降低通道空乏程度,導致Ioff上升,降低光感測特性。根據模擬結果之評估,LCL為0.8 μm、NCL為10^17 cm^-3及TCL為200 nm應可視為Type B TFT之較適化結構參數。
    於「具較適化結構覆蓋層參數於Type B TFT之光感測性能分析」之研究上,係先透過p-GaN(200 nm)/n-IGZO (40 nm)異質接面二極體(與Type B TFT較適化元件之p-GaN/n-IGZO HJ結構相同)掌握不同入射光波長對元件光響應特性之影響。於Type B TFT模擬結果顯示,居於p-GaN CL相較於IGZO通道厚度較大,使長波長之UV光則易由通道吸收,模擬結果顯示於入射光功率(Pin )為50 mW⁄cm^2 之350 nm紫外光波段照射下之Rph、Sph及D^*分別為9.62 A⁄W、11.7×10^2 A⁄A 與83.8×10^8 Jones。
    本論文所提出具GaN CL之IGZO TFT UV-PDs元件,其光電特性模擬分析結果顯示,具LCL為0.8 μm、NCL為10^17 cm^-3及TCL為200 nm 之GaN CL可展現出優異光感測性能,於350 nm紫外光照射下,相較於較適化結構、無GaN CL之Type A TFT,分別於R_ph、S_ph及D^*提升6.59、6.61與6.6倍,採用p-GaN CL於提升IGZO TFT紫外光感測器光響應之效益提升上可獲肯定。本論文提出具GaN CL之IGZO TFT UV-PDs擁有較傳統結構優異的光響應特性,可提供半導體產業進行UV-PDs開發之參考,預期可對先進紫外光感測器之開發有所助益。

    In this study, ultraviolet photodetectors (UV-PDs) based on In-Ga-ZnO (IGZO) thin film transistors (TFTs) with a p-GaN capping layer (CL) are proposed and simulated. Significant improvements are observed in the optoelectronic characteristics of the proposed IGZO TFT UV-PDs with a p-GaN CL through Sentaurus TCAD simulations. By adjusting structural parameters of conventional IGZO TFTs, an optimized Type A TFT configuration with excellent UV light sensing performance was achieved. To further enhance photoresponse performance, a floating CL was added to the back-channel surface to form a pn heterojunctions. This design allows the channel to remain fully depleted with increased channel thickness (TCL), thereby suppressing Ioff and expanding the space for photogenerated carrier generation. Additionally, CL parameter analysis was performed. When the GaN CL parameters were set to LCL=0.8 μm, NCL=10×10^16 cm^-3, and TCL=200 nm, the device exhibited superior photodetection performance. Under 350 nm UV light, the device achieved a photoresponsivity (Rph) of 9.62 A/W, a photosensitivity (Sph) of 1.17×10^3 A⁄A, and a specific detectivity(D^* ) of 8.38×10^9 Jones. Compared to the optimized Type A TFT structure, the proposed device demonstrated enhancements in Rph, Sph, and D^* by factors of 6.59, 6.61, and 6.6, respectively,revealing that the proposed Type B TFT is potential for advanced UVPDs applications.

    中文摘要 I SUMMARY VI 致謝 XII 表目錄 XVII 圖目錄 XX 第1章 緒論 1 1-1 紫外光感測器(UV-PDs)之應用與現況 1 1-2 IGZO通道層之材料特性 4 1-3 GaN覆蓋層之材料特性 6 1-4 研究動機 8 第2章 研究理論背景 10 2-1 薄膜電晶體(TFT)之基本操作原理 10 2-1-1 TFT之操作機制與通道全空乏狀態 10 2-1-2 TFT之光感測機制 14 2-2 具覆蓋層(CL)之IGZO TFT結構設計理念 15 2-2-1 p-GaN CL之結構理念 15 2-2-2 p-GaN CL之光感測機制 16 2-3 薄膜電晶體(TFT)之相關參數萃取 18 2-3-1 TFT之靜電特性參數萃取方式 18 2-3-2 TFT之光感測特性參數萃取方式 19 第3章 模擬元件結構設計使用之工具與物理模型 21 3-1 IGZO UV-PDs元件結構設計規劃 21 3-2 元件模擬分析之工具與物理模型 24 3-3 元件模擬之校正 28 第4章 傳統IGZO TFT UV-PDs結構參數於光電特性之研究 32 4-1 傳統IGZO TFTs結構參數於元件電特性之研究 32 4-1-1 通道厚度(Tch)於元件電特性之影響 33 4-1-2 通道摻雜濃度(Nch)於元件電特性之探討 38 4-1-3 閘極功函數(ϕm)於元件電特性之探討 43 4-2 傳統IGZO TFTs於UV光照射下光感測性能之分析 49 4-2-1 不同入射光波長於IGZO TFT光感測性能之探討 49 4-2-2 通道厚度(Tch)於IGZO TFT UV-PDs光感測性能之探討 58 4-2-3 通道濃度(Nch於IGZO TFT UV-PDs光感測性能之探討 60 4-2-4 閘極功函數(ϕm)於IGZO TFT UV-PDs光感測性能之探討 62 第5章 p-GaN CL結構參數於IGZO TFT UV-PDs對光電特性之研究 66 5-1 p-GaN CL結構參數於IGZO TFTs電特性之研究 67 5-1-1 覆蓋層長度(LCL)於元件電特性之探討 67 5-1-2 覆蓋層濃度(NCL)於元件電特性之探討 72 5-1-3 覆蓋層厚度(TCL)於元件電特性之探討 76 5-2 GaN CL/IGZO TFTs於照光下光感測性能之分析 82 5-2-1 不同入射光波長對具GaN CL於IGZO TFT光感測性能之探討 82 5-2-2 覆蓋層長度(LCL)於GaN CL/IGZO TFT UV-PDs光感測性能之探討 92 5-2-3 覆蓋層濃度(NCL)於GaN CL/IGZO TFT UV-PDs光感測性能之探討 94 5-2-3 覆蓋層厚度(TCL)於GaN CL/IGZO TFT UV-PDs光感測性能之探討 96 第6章 結論及未來研究建議 99 6-1 結論 99 6-2 未來研究建議 102 參考文獻 105

    [1] T. M. Ansary, M. R. Hossain, K. Kamiya, M. Komine, and M. Ohtsuki, "Inflammatory Molecules Associated with Ultraviolet Radiation-Mediated Skin Aging," Int J Mol Sci, vol. 22, no. 8, Apr. 2021, Art. no. 3974, doi: 10.3390/ijms22083974.
    [2] Z. Li, Z. Li, C. Zuo, and X. Fang, "Application of Nanostructured TiO2 in UV Photodetectors: A Review," Adv Mater, vol. 34, no. 28, p. 2109083, Jul 2022, doi: 10.1002/adma.202109083.
    [3] A. Rogalski, Z. Bielecki, J. Mikolajczyk, and J. Wojtas, "Ultraviolet Photodetectors: From Photocathodes to Low-Dimensional Solids," Sensors (Basel), vol. 23, no. 9, May. 2023, Art. no. 94452, doi: 10.3390/s23094452.
    [4] N. Jain et al., "Heterostructured core-shell metal oxide-based nanobrushes for ultrafast UV photodetectors," Materials Science and Engineering: R: Reports, vol. 160, 2024, Art. no. 100826, doi: 10.1016/j.mser.2024.100826.
    [5] M. Bembenek et al., "Optical and Mechanical Properties of Layered Infrared Interference Filters," Sensors (Basel), vol. 22, no. 21, Oct. 2022, Art. no. 8105, doi: 10.3390/s22218105.
    [6] J. Zhou, L. Chen, Y. Wang, Y. He, X. Pan, and E. Xie, "An overview on emerging photoelectrochemical self-powered ultraviolet photodetectors," Nanoscale, vol. 8, no. 1, pp. 50-73, Jan. 2016, doi: 10.1039/c5nr06167a.
    [7] H. D. Jabbar, M. A. Fakhri, and M. Jalal AbdulRazzaq, "Gallium Nitride –Based Photodiode: A review," Materials Today: Proceedings, vol. 42, pp. 2829-2834, 2021, doi: 10.1016/j.matpr.2020.12.729.
    [8] Z. Liu and W. Tang, "A review of Ga2O3 deep-ultraviolet metal–semiconductor Schottky photodiodes," Journal of Physics D: Applied Physics, vol. 56, no. 9, 2023, Art. no. 095103, doi: 10.1088/1361-6463/acb6a5.
    [9] C.-Y. Huang et al., "A self-powered ultraviolet photodiode using an amorphous InGaZnO/p-silicon nanowire heterojunction," Vacuum, vol. 180, 2020, Art. no. 109619, doi: 10.1016/j.vacuum.2020.109619.
    [10] J. Hu et al., "Research advances in ZnO nanomaterials-based UV photode tectors: a review," Nanotechnology, vol. 34, no. 23, Mar. 2023, Art. no. 23, doi: 10.1088/1361-6528/acbf59.
    [11] T. T. Ngoc Van, A. S. Ansari, and B. Shong, "Surface chemical reactions during atomic layer deposition of ZnO, ZnS, and Zn(O,S)," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 37, no. 2, 2019, Art. no. 020902, doi: 10.1116/1.5079247.
    [12] H. Yoo, I. S. Lee, S. Jung, S. M. Rho, B. H. Kang, and H. J. Kim, "A Review of Phototransistors Using Metal Oxide Semiconductors: Research Progress and Future Directions," Adv Mater, vol. 33, no. 47, Nov 2021, Art. no. 2006091, doi: 10.1002/adma.202006091.
    [13] K.-T. Lam et al., "Characteristics of Metal–Semiconductor–Metal Ultraviolet Photodetectors Based on Pure ZnO/Amorphous IGZO Thin-Film Structures," Journal of Nanomaterials, vol. 2021, pp. 1-6, 2021, Art. no. 6649200, doi: 10.1155/2021/6649200.
    [14] C.-Y. Huang, W.-Y. Li, Y.-H. Hsiao, W.-N. Gao, and C.-J. Chen, "Trap-assisted photomultiplication in a-IGZO/p-Si heterojunction ultraviolet photodiodes," Smart Materials and Structures, vol. 29, no. 11, 2020, Art. no. aba81a, doi: 10.1088/1361-665X/aba81a.
    [15] M. Kim, J. Beak, S. Kim, W. S. Hwang, B. J. Cho, and M. Shin, "Impact of oxygen deficiency and shallow hole-traps on high-responsivity ZnO-based UV photodetectors," Sensors and Actuators A: Physical, vol. 369, 2024, Art. no. 115160, doi: 10.1016/j.sna.2024.115160.
    [16] K. Ide, K. Nomura, H. Hosono, and T. Kamiya, "Electronic Defects in Amorphous Oxide Semiconductors: A Review," physica status solidi (a), vol. 216, no. 5, 2019, Art. no. 1800372, doi: 10.1002/pssa.201800372.
    [17] H. O. Kenji Nomura1, Akihiro Takagi2, Toshio Kamiya1,2, and Masahiro Hirano1 & Hideo Hosono1, 3, "<nature03090.pdf>," NaturePublishingGroup, vol. 432, 2004, Art. no. 489 doi: https://doi.org/10.1038/nature03090.
    [18] J. Troughton and D. Atkinson, "Amorphous InGaZnO and metal oxide semiconductor devices: an overview and current status," Journal of Materials Chemistry C, vol. 7, no. 40, pp. 12388-12414, 2019, doi: 10.1039/c9tc03933c.
    [19] M. Meneghini et al., "GaN-based power devices: Physics, reliability, and perspectives," Journal of Applied Physics, vol. 130, no. 18, 2021, Art. no. 180901, doi: 10.1063/5.0061354.
    [20] F. B. a. V. Fiorentini, "<Spontaneous polarization and piezoelectric constants of III-V nitrides.pdf>," The Americac Physical Society, vol. 56, 1997, Art. no. 63, doi: 63-1829(97)51740-1.
    [21] S. Keller et al., "Recent progress in metal-organic chemical vapor deposition of N-polar group-III nitrides," Semiconductor Science and Technology, vol. 29, no. 11, 2014, Art. no. 113001, doi: 10.1088/0268-1242/29/11/113001.
    [22] E. T. Yu, X. Z. Dang, P. M. Asbeck, S. S. Lau, and G. J. Sullivan, "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 17, no. 4, pp. 1742-1749, 1999, doi: 10.1116/1.590818.
    [23] S. Jakher and R. Yadav, "Organic thin film transistor review based on their structures, materials, performance parameters, operating principle, and applications," Microelectronic Engineering, vol. 290, 2024, Art. no. 112193, doi: 10.1016/j.mee.2024.112193.
    [24] T. Kawamura, H. Uchiyama, S. Saito, H. Wakana, T. Mine, and M. Hatano, "Analysis of subthreshold slope of fully depleted amorphous In-Ga-Zn-O thin-film transistors," Applied Physics Letters, vol. 106, no. 1, 2015, Art. no. 012103, doi: 10.1063/1.4905469.
    [25] A. Yan et al., "Thin‐Film Transistors for Integrated Circuits: Fundamentals and Recent Progress," Advanced Functional Materials, vol. 34, no. 3, 2023, Art. no. 202304409, doi: 10.1002/adfm.202304409.
    [26] J. Song, X. Huang, C. Han, Y. Yu, Y. Su, and P. Lai, "Recent Developments of Flexible InGaZnO Thin‐Film Transistors," physica status solidi (a), vol. 218, no. 7, 2021, Art. no. 202000527, doi: 10.1002/pssa.202000527.
    [27] Y. Zhou, X. Wang, and A. Dodabalapur, "Accurate Field‐Effect Mobility and Threshold Voltage Estimation for Thin‐Film Transistors with Gate‐Voltage‐Dependent Mobility in Linear Region," Advanced Electronic Materials, vol. 9, no. 2, 2022, Art. no. 202200786, doi: 10.1002/aelm.202200786.
    [28] S.-Y. Lee, J.-Y. Kwon, and M.-K. Han, "Investigation of Photo-Induced Hysteresis and Off-Current in Amorphous In-Ga-Zn Oxide Thin-Film Transistors Under UV Light Irradiation," IEEE Transactions on Electron Devices, vol. 60, no. 8, pp. 2574-2579, 2013, doi: 10.1109/ted.2013.2266072.
    [29] P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, "Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on amorphous indium zinc oxide," Journal of Non-Crystalline Solids, vol. 352, no. 9-20, pp. 1756-1760, 2006, doi: 10.1016/j.jnoncrysol.2006.01.068.
    [30] B. Lu et al., "Amorphous oxide semiconductors: From fundamental properties to practical applications," Current Opinion in Solid State and Materials Science, vol. 27, no. 4, 2023, Art. no. 101092, doi: 10.1016/j.cossms.2023.101092.
    [31] Y. Zhang, G. He, L. Wang, W. Wang, X. Xu, and W. Liu, "Ultraviolet-Assisted Low-Thermal-Budget-Driven alpha-InGaZnO Thin Films for High-Performance Transistors and Logic Circuits," ACS Nano, vol. 16, no. 3, pp. 4961-4971, Mar 22 2022, doi: 10.1021/acsnano.2c01286.
    [32] J.-M. Park et al., "Improved Field-Effect Mobility of In–Ga–Zn–O TFTs by Oxidized Metal Layer," IEEE Transactions on Electron Devices, vol. 67, no. 11, pp. 4924-4928, 2020, doi: 10.1109/ted.2020.3022337.
    [33] H. Yoo et al., "High Photosensitive Indium-Gallium-Zinc Oxide Thin-Film Phototransistor with a Selenium Capping Layer for Visible-Light Detection," ACS Appl Mater Interfaces, vol. 12, no. 9, pp. 10673-10680, Mar 4 2020, doi: 10.1021/acsami.9b22634.
    [34] D. Hong, G. Yerubandi, H. Q. Chiang, M. C. Spiegelberg, and J. F. Wager, "Electrical Modeling of Thin-Film Transistors," Critical Reviews in Solid State and Materials Sciences, vol. 33, no. 2, pp. 101-132, 2008, doi: 10.1080/10408430701384808.
    [35] E. Fortunato, P. Barquinha, and R. Martins, "Oxide semiconductor thin-film transistors: a review of recent advances," Adv Mater, vol. 24, no. 22, pp. 2945-86, Jun 12 2012, doi: 10.1002/adma.201103228.
    [36] Y. Xu et al., "High-performance MoO(x)/n-Si heterojunction NIR photodetector with aluminum oxide as a tunneling passivation interlayer," Nanotechnology, vol. 32, no. 27, Apr. 2021, Art. no. 027401, doi: 10.1088/1361-6528/abf37c.
    [37] X. Tang et al., "Photovoltaic–Pyroelectric coupled effect enhanced photo-responsivity of a p-n heterojunction Self-Powered ultraviolet photodetector," Chemical Engineering Journal, vol. 477, 2023, Art. no. 146762, doi: 10.1016/j.cej.2023.146762.
    [38] S. Tiwari and R. Saha, "Improved optical performance in near visible light detection photosensor based on TFET," Microelectronics Journal, vol. 129, 2022, Art. no. 105554, doi: 10.1016/j.mejo.2022.105554.
    [39] Z. Tao et al., "Printable Organic PIN Phototransistor and Its Application for Low Power and Noise Imaging Detection," IEEE Photonics Journal, vol. 14, no. 1, pp. 1-5, 2022, doi: 10.1109/jphot.2021.3128919.
    [40] Z. Xi et al., "Tunable Ga2O3 solar-blind photosensing performance via thermal reorder engineering and energy-band modulation," Nanotechnology, vol. 35, no. 9, Dec 15 2023, Art. no. ad10e3, doi: 10.1088/1361-6528/ad10e3.
    [41] M. Labed and N. Sengouga, "Simulation of the influence of the gate dielectric on amorphous indium-gallium-zinc oxide thin-film transistor reliability," Journal of Computational Electronics, vol. 18, no. 2, pp. 509-518, 2019, doi: 10.1007/s10825-019-01316-4.
    [42] S. A. Hussien and S. O. Abdellatif, "Simulating the I‐V characteristics of an ultrathin IGZO‐based thin film transistor using finite element method," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 35, no. 2, 2021, Art. no. 2961, doi: 10.1002/jnm.2961.
    [43] S. P. Abhishek Kannaujia, G. S. Tripathi and Brijesh Kumar, "<Impact_of_Channel_Length_on_Performance_of_Single-Gate_and_Dual-Gate_a-IGZO_Thin_Film_Transistor.pdf>," International Conference on Electrical and Electronics Engineering, 2020, Art. no. 978, doi: 978-17281-5846-4/20.
    [44] J. Park et al., "Numerical Analysis on Effective Mass and Traps Density Dependence of Electrical Characteristics of a-IGZO Thin-Film Transistors," Electronics, vol. 9, no. 1, 2020, Art. no. 0119, doi: 10.3390/electronics9010119.
    [45] Z. Ahangari, "Design and simulation of a nano biosensor based on amorphous indium gallium zinc oxide (a-IGZO) thin film transistor," Semiconductor Science and Technology, vol. 39, no. 3, 2024, Art. no. ad28f4, doi: 10.1088/1361-6641/ad28f4.
    [46] N. Kumar, D. Bhatt, M. Sutradhar, and S. Panda, "Interface mechanisms involved in a-IGZO based dual gate ISFET pH sensor using Al2O3 as the top gate dielectric," Materials Science in Semiconductor Processing, vol. 119, 2020, Art. no. 105239, doi: 10.1016/j.mssp.2020.105239.
    [47] A. G. Aberle, S. Glunz, and W. Warta, "Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si-SiO2 interface," Journal of Applied Physics, vol. 71, no. 9, pp. 4422-4431, 1992, doi: 10.1063/1.350782.
    [48] G. A. M. H. D. B. M. K. M. P. G. Knuvers, "<A_new_recombination_model_for_device_simulation_including_tunneling.pdf>," pp. 334-338, 1992, doi: 10.1109/16.121690.
    [49] M. V. L. COLALONGO’, G. BACCARANI’, P. MIGLIORATO’, and G. T. a. C. REITA2t, "Numerical analysis of poly-TFTs under off conditions," Microelectronics Journal, vol. 41, no. 4, pp. 627-633, 1997, doi: https://doi.org/10.1016/S0038-1101(96)00201-8.
    [50] J. J. LIOU, "MODELING THE TUNNELLING CURRENT IN
    REVERSE-BIASED p/n JUNCTIONS," Solid-State Electronics, vol. 33, pp. 971-972, 1990.
    [51] Sentaurus Device User Guide Version. T-2022.03, CA, USA: Mountain View, 2022.
    [52] X. Zou et al., "Enhanced performance ofa-IGZO thin-film transistors by forming AZO/IGZO heterojunction source/drain contacts," Semiconductor Science and Technology, vol. 26, no. 5, 2011, Art. no. 055003, doi: 10.1088/0268-1242/26/5/055003.
    [53] Y. Pei et al., "Low-Temperature-Crystallized Ga2O3 Thin Films and Their TFT-Type Solar-Blind Photodetectors," J Phys Chem Lett, vol. 13, no. 31, pp. 7243-7251, Aug. 2022, doi: 10.1021/acs.jpclett.2c01852.
    [54] L. Shen et al., "Improved β-Ga2O3 Solar-Blind Deep-Ultraviolet Thin-Film Transistor Based on Si-Doping," Journal of Electronic Materials, vol. 51, no. 7, pp. 3579-3588, 2022, doi: 10.1007/s11664-022-09599-3.
    [55] X. Xiao et al., "Solution-processed amorphous Ga2O3:CdO TFT-type deep-UV photodetectors," Applied Physics Letters, vol. 116, no. 19, 2020, Art. no. 192102, doi: 10.1063/5.0007617.
    [56] Y. Liao, Y. J. Kim, and M. Kim, "p-GaN/n-IGZO self-powered ultraviolet photodetector with ultralow dark current and high sensitivity," Chemical Engineering Journal, vol. 476, 2023, Art. no. 146838, doi: 10.1016/j.cej.2023.146838.
    [57] Y. Li et al., "High-Performance Solar-Blind UV Phototransistors Based on ZnO/Ga2O3 Heterojunction Channels," ACS Appl Mater Interfaces, vol. 15, no. 14, pp. 18372-18378, Apr. 2023, doi: 10.1021/acsami.2c21314.
    [58] M. Wang et al., "Self-powered UV photodetectors and imaging arrays based on NiO/IGZO heterojunctions fabricated at room temperature," Opt Express, vol. 30, no. 15, pp. 27453-27461, Jul. 2022, doi: 10.1364/OE.463926.
    [59] Y. Wang et al., "All-Oxide NiO/Ga2O3 p–n Junction for Self-Powered UV Photodetector," ACS Applied Electronic Materials, vol. 2, no. 7, pp. 2032-2038, 2020, doi: 10.1021/acsaelm.0c00301.
    [60] H. Sun et al., "Mobility and current boosting of In-Ga-Zn-O thin-film transistors with metal capping layer oxidation," Nanotechnology, vol. 35, no. 35, Jun. 2024, Art. no. ad544b, doi: 10.1088/1361-6528/ad544b.
    [61] M. G. Shin, K. H. Bae, H. S. Jeong, D. H. Kim, H. S. Cha, and H. I. Kwon, "Effects of Capping Layers with Different Metals on Electrical Performance and Stability of p-Channel SnO Thin-Film Transistors," Micromachines (Basel), vol. 11, no. 10, Sep. 2020, Art. no. 917, doi: 10.3390/mi11100917.
    [62] H. Han et al., "Memory Characteristics of Thin Film Transistor with Catalytic Metal Layer Induced Crystallized Indium-Gallium-Zinc-Oxide (IGZO) Channel," Electronics, vol. 11, no. 1, 2021, Art. no. 53, doi: 10.3390/electronics11010053.
    [63] H.-S. Cha, H.-S. Jeong, S.-H. Hwang, D.-H. Lee, and H.-I. Kwon, "Electrical Performance and Stability Improvements of High-Mobility Indium–Gallium–Tin Oxide Thin-Film Transistors Using an Oxidized Aluminum Capping Layer of Optimal Thickness," Electronics, vol. 9, no. 12, 2020, Art. no. 2196, doi: 10.3390/electronics9122196.
    [64] H. W. Zan, C. C. Yeh, H. F. Meng, C. C. Tsai, and L. H. Chen, "Achieving high field-effect mobility in amorphous indium-gallium-zinc oxide by capping a strong reduction layer," Adv Mater, vol. 24, no. 26, pp. 3509-14, Jul. 2012, doi: 10.1002/adma.201200683.
    [65] R. S. d. Oliveira et al., "Identification of Self-Buffer Layer on GaN/glass Films Grown by Reactive Sputtering," Materials Research, vol. 26, 2023, Art. no. 2023 doi: 10.1590/1980-5373-mr-2023-0005.
    [66] R. S. d. Oliveira et al., "Structural, Morphological, Vibrational and Optical Properties of GaN Films Grown by Reactive Sputtering: The Effect of RF Power at Low Working Pressure Limit," Materials Research, vol. 25, 2022, Art. no. 2022, doi: 10.1590/1980-5373-mr-2021-0432.
    [67] A. Mantarcı and M. Kundakçi, "Production of GaN/n–Si thin films using RF magnetron sputtering and determination of some physical properties: argon flow impacts," Journal of the Australian Ceramic Society, vol. 56, no. 3, pp. 905-914, 2019, doi: 10.1007/s41779-019-00420-9.
    [68] X. Zhou et al., "Realizing High-Performance β-Ga₂O₃ MOSFET by Using Variation of Lateral Doping: A TCAD Study," IEEE Transactions on Electron Devices, vol. 68, no. 4, pp. 1501-1506, 2021, doi: 10.1109/ted.2021.3056326.
    [69] Z. Fan, A. Shen, Y. Xia, and C. Dong, "Amorphous InGaZnO Thin-Film Transistors with Double-Stacked Channel Layers for Ultraviolet Light Detection," Micromachines (Basel), vol. 13, no. 12, Nov. 2022, Art. no. 22099, doi: 10.3390/mi13122099.
    [70] M. G. Kim et al., "A chemically treated IGZO-based highly visible-blind UV phototransistor with suppression of the persistent photoconductivity effect," Journal of Materials Chemistry C, vol. 11, no. 43, pp. 15178-15196, 2023, doi: 10.1039/d3tc02756b.
    [71] P.-Y. Yen et al., "Analysis of Channel-Length Dependence of Residual Hydrogen Diffusion From the Gate Insulator During Oxygen Annealing Treatment in IGZO TFTs," IEEE Electron Device Letters, vol. 45, no. 9, pp. 1586-1589, 2024, doi: 10.1109/led.2024.3424579.
    [72] Z. Han et al., "High-performance IGZO/Ga2O3 dual-active-layer thin film transistor for deep UV detection," Applied Physics Letters, vol. 120, no. 26, 2022, Art. no. 263501, doi: 10.1063/5.0089038.
    [73] C. H. Ahn, S. Hee Kim, M. Gu Yun, and H. Koun Cho, "Design of step composition gradient thin film transistor channel layers grown by atomic layer deposition," Applied Physics Letters, vol. 105, no. 22, 2014, Art. no. 223506, doi: 10.1063/1.4901732.
    [74] H. Ferhati, F. Djeffal, and L. B. Drissi, "Performance analysis of a new Mid-Infrared phototransistor based on combined graded band gap GeSn sensitive-film and IGZO TFT platform," Micro and Nanostructures, vol. 173, 2023, Art. no. 207467, doi: 10.1016/j.micrna.2022.207467.
    [75] Y. Yoon, Y. Kim, and M. Shin, "Impact of Channel Thickness and Doping Concentration for Normally-Off Operation in Sn-Doped beta-Ga2O3 Phototransistors," Sensors (Basel), vol. 24, no. 17, Sep. 2024, Art. no. 5822, doi: 10.3390/s24175822.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE