| 研究生: |
田恩東 Tian, En-Dong |
|---|---|
| 論文名稱: |
砷化鎵系垂直共振腔表面發射型雷射二極體之研製 Fabrication of GaAs-Based Vertical Cavity Surface Emitting Laser (VCSEL) Diodes |
| 指導教授: |
劉文超
Liu, Wen-Chau |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 砷化鎵 、氧化侷限垂直共振腔表面發射型雷射二極體 、聚醯亞胺保護層 、氧化孔徑 、感應耦合電漿離子 |
| 外文關鍵詞: | GaAs, oxide-confined Vertical Cavity Surface Emitting Laser (VCSEL) Diode, the passivation layer of polyimide, aperture sizes, inductively coupled plasma |
| 相關次數: | 點閱:159 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要研究砷化鎵(GaAs)垂直共振腔表面發射型雷射二極體,近年來,面射型雷射被廣泛運用在3D感測技術,由於VCSEL具有圓形光束和較低的消耗功率,不需要切割即可直接在晶圓上做量測,低操作電流與高調製能力,因此相對於邊緣發射型雷射有更好的吸引力,其中又以氧化侷限的方式更為研究單位使用,因其表現出顯著的低閾值電流和超過50%的高功率轉換效率。
從設計光罩的過程與改善,到製程上利用RF濺鍍機鍍上二氧化矽於磊晶片上,透過黃光與蝕刻定義所需要區域。二氧化矽主要作為阻擋感應耦合電漿蝕刻用,目的在於蝕刻出高鋁含量之砷化鋁鎵層,並且討論了乾蝕刻與溼蝕刻的溶液與氣體的選擇和其優劣性,接著試片進行最重要的濕氧化製程,吾人製備了850 nm和940 nm不同氧化孔徑大小的面射型雷射,以利於找尋光電特性最優的參數,為了改善元件壽命和漏電流過大的問題,用塗佈的方式完成聚醯亞胺為材料的保護層,並展示其成果與討論,最後藉由熱蒸鍍系統鍍上陽極、陰極和打線接合的歐姆接觸金屬,詳細介紹如何完整製造垂直共振腔表面發射型雷射二極體的全部過程。
In this thesis, GaAs-based vertical cavity surface emitting laser (VCSEL) diodes are fabricated and studied, furthermore have introduced the progress of VCSELs. In recent years, surface-emitting lasers have been widely used in 3D sensing technology. The VCSELs are more attractive than edge-emitting lasers due to a circular output beam generated, low power consumption, suitable for on-wafer testing, low current consumption, and high frequency modulation capability. The oxide-confined which is more used by research institutes has a good ability of lateral current, optical confinement, threshold current reduction, high power-conversion efficiencies for over 50%.
First, the improvement of designing the photomask are introduced, we designed the first photomask, but it has many problems, such as bridge was etched, without isolation and passivation, for this reason we have been designed the second photomask. On the other hand SiO2 is deposited via RF sputtering on the surface of the epitaxial wafer. The SiO2 layer is defined by lithography technology and etched. The SiO2 is then taken as a hard mask for ICP etching. The ICP is used to etch DBRs in order to expose the AlAs layer, discussed the dry etching or wet etching with solution and gases which one is better, before transferring the sample for the oxidation process, we have fabricated the VCSELs of different oxidation aperture sizes with 850 nm and 940 nm to find the optimal parameters of photoelectric characteristics. Furthermore, the passivation layer of polyimide was coated to improve the problems of live life and leakage current, then results and discussions are displayed. Finally, ohmic contact were sequentially deposited using TE as the bonding line, positive and negative electrode pads. We were Introduced how to make the VCSEL completely in detail.
[1] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys., Vol. 18, No. 12, pp. 2329–2330, pp. 1201-1215, 1979.
[2] K. Iga, S. Ishikawa, S. Ohkouchi, and T. Nishimura, “Room-temperature pulsed oscillation of GaAlAs/GaAs surface-emitting injection laser,” Appl. Phys. Lett., vol. 45, No. 3, pp. 348-350, 1984.
[3] F. Koyama, S. Kinoshita, and K. Iga, “Room-temperature continuous wave lasing characteristics of GaAs vertical cavity surface-emitting laser,” Appl. Phys. Lett., vol. 55, No. 3, pp. 221–222, 1989.
[4] J. L. Jewell, S. L. McCall, A. Scherer, H. H. Houh, N. A. Whitaker, A. C. Gossard, and J. H. English, “Transverse modes, waveguide dispersion and 30-ps recovery in submicron GaAs/AlAs microresonators,” Appl. Phys. Lett., vol. 55, pp. 22–24, 1989.
[5] R. S. Geels, S. W. Corzine, and L. A. Coldren, “InGaAs vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 27, no. 6, pp. 1359–1367, 1991.
[6] Y. Hayashi, T. Mukaihara, N. Hatori, N. Ohnoki, A. Matsutani, F. Koyama, and K. Iga, “Lasing characteristics of low-threshold oxide confinement InGaAs-GaAlAs vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett., vol. 7, no. 11, pp. 1234–1236, 1995.
[7] K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib, “Selectively oxidized vertical-cavity surface emitting lasers with 50% power conversion efficiency,” Electron. Lett., vol. 31, no. 3, pp. 208–209, 1995.
[8] R. Jmger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Wigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett., vol. 33, no. 4, pp. 330–331, 1997.
[9] F. Koyama, “Recent Advances of VCSEL Photonics,” IEEE J. Lightwave Technology, vol. 24, no. 12, 2006.
[10] A. V. Krishnamoorthy, K. W. Goossen, L.M.F. Chirovsky, R.G. Rozier, P . Chandramani, S.P. Hui, J. Lopata, J.A. Walker, L.A. D’Asaro, “16*16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett., vol. 12, no. 8, pp. 1073-1075, 2000.
[11] A. Haglund, J. S. Gustavsson, J. Vukusi´c, P. Modh, and A. Larsson, “Single fundamental-mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett.,vol. 16, no. 2, pp. 368–370, 2004.
[12] A. J. Danner, J. J. Raftery, Jr., P. O. Leisher, and K. D. Choquette, “Single mode photonic crystal vertical cavity lasers,” Appl. Phys. Lett., vol. 88, no. 9, pp. 091114-1–091114-3, 2006.
[13] Li Te, Ning Yongqiang, Sun Yanfang etal, “Beam Quality of 980 nm High Power Vertical Cavity Surface Emitting Laser”,Chinese Journal of Lasers , pp.34,641-644, 2007.
[14] M. S. Alias, S. Shaari, P. O. Leisher, and K. D. Choquette, “Single transverse mode control of VCSEL by photonic crystal and trench patterning,” Photon. Nanostruct. Fundam. Appl., vol. 8, no. 1, pp. 38–46, 2010.
[15] A.-S. Gadallah, R.Michalzik, “High output power single higher order transverse mode VCSEL with shallow surface relief,” IEEE Photon. Technol. Lett., vol. 23, no. 15, pp. 1040–1042, Aug. 2011.
[16] P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett.,vol. 48, no. 1145, 2012.
[17] L. A. Coldren, and S. W. Corzine, Diode lasers and photonic integrated circuits, Chapter 7, John Wiley & Sons, Inc., New York, 1995.
[18] F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol., vol. 24,no. 4502–4513, 2006.
[19] H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for optical interconnects,” SPIE Newsroom, vol. 7, no 2, pp. 121-136, 2019
[20] A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron., vol. 17, no. 1552–1567, 2011.
[21] R. Michalzik, “VCSELs - Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers,” Springer Series in Optical Sciences Springer, vol. 166, 2013
[22] C. Wilmsen, H. Temkin, and L. A. Coldren, eds., “Vertical Cavity Surface Emitting Lasers: Design Fabrication,” Characterization and Applications, Cambridge University, 1999.
[23] H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices, Springer Series in Photonics (Springer), vol. 6, , 2003
[24] J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “Hig-efficiency VCSEL arrays for illumination and sensing in consumer applications,” SPIE, vol. 9766, 20
[25] N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, and H. Nakayama, “VCSEL array-based light exposure system for laser printing,” SPIE ,vol. 6908, 2008.
[26]T. Yoshikawa, H. Kosaka, K. Kurihara, M. Kajita, Y. Sugimoto, and K. Kasahara, “Complete polarization control of 8x8 vertical-cavity surface-emitting laser matrix arrays,” Appl. Phys. Lett., vol. 66, pp. 908-910, 1995.
[27] Jose Pozo, Elena Beletkaia, “VCSEL Technology in the Data Communi cation Industry,” PhotonicsViews, vol. 16, no. 6, pp. 21-23, 2019.
[28] S. F. Yu, “Analysis and design of vertical cavity surface emitting lasers”, John Wiley & Sons, Inc., Hoboken, New Jersey, Chapter 2, 2003.
[29] L. A. Coldren, and S. W. Corzine, Diode lasers and photonic integrated circuits, John Wiley & Sons, Inc., Chapter 3, 1995.
[30] Y. Qian, Z. H. Zhu, Y. H. Lo, D. L. Huffaker, D. G. Deppe, H. Q. Hou, B. E. Hammons, W. Lin, and Y. K. Tu, “Low-threshold proton-implanted 1.3μm vertical-cavity top-surface-emitting lasers with dielectric and wafer-bonded GaAs–AlAs Bragg mirrors.” IEEE Photon. Technol. Lett., vol. 9, No. 7, pp. 866-868, 1997.
[31]C. W. Wilmsen, H. Temkin, and L. A. Coldren, Vertical-cavity surface-emitting lasers- design, fabrication, characterization and applications, Chapter 4, Cambridge University Press, Cambridge, 1999.
[32] D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 29, No. 6, pp. 2013-2022, 1993.
[33] S. Rapp, J. Piprek, K. Streubel, J. Andre and J. Wallin, “Temperature sensitivity of 1.54-μm vertical-cavity lasers with and InP-based Bragg reflector,” IEEE J. Quantum Electron., vol. 33, No. 10, pp. 1839-1845, 1997.
[34]W. W. Chow, K. D. Choquette, M. H. Crawford, K. L. Lear, and G. Ronald Hadley, “Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 33, No. 10, pp. 1810-1824, 1997
[35] M. Tong, D. G. Ballegeer, A. Ketterson, E. J. Roan, K. Y. Cheng and I. Adesida, “A Comparative Study of Wet and Dry Selective Etching Processes for GaAs/AIGaAs/InGaAs Pseudomorphic MODFETs,” Journal of Electronic Materials, vol. 21, no. 1, pp. 9-15, 1992.
[36] J.-M. Lee, K.-S. Lee and S.-J. Park, “Removal of dry etch damage in p-type GaN by wet etching of sacrificial oxide layer,” Journal of Vacuum Science & Technology B, vol. 22, no. 2, pp. 479-482, 2004.
[37] Y.Feng, G. J. Liu, C. L. Yan, Y. Q. Hao, Y. Wang, Z.J.Li, P.Lu, “study on the law of oxidation rate in GaAs-based VCSELs,” optik optik journal, vol. 125, no. 18, pp.5124-5127, 2014
[38] C.I.H. Ashby, M.M. Bridges, A.A. Allerman, “Origin of the time dependence of wet oxidation of AlGaAs,” Appl. Phys., vol. 75, 1999.
[39] Li Ruoyuan, Wang Zhanguo, Xu Bo, et al., “Wet oxidation of AlxGa1-xAs/GaAs distributed Bragg reflectors,” Chin. J. Semicond.,vol. 26, pp. 1519-1523, 2005.
[40] A. N. Al-Omari, and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett., vol. 16, pp. 969-971, 2004.
[41] A N Al-Omari , M.S. Alias, A. Abaneh, and K L Lear, “Improved performance of top-emitting oxide-confined polyimide-planarized 980 nm VCSELs with copper-plated heat sinks,” Journal of Physics D-Applied Physics, vol. 45, pp.1-8 , 2012.
[42] D.L. Dunson, Synthesis and Characterization of Thermosetting Polyimide Oligomers for Microelectronics Packing, Ph.D. thesis, Virginia Polytechnic Institute, 2000.
[43] Mark J.M. Abadie, Chemical and Physical Properties of Polyimides: Biomedical and Engineering Applications, 2012
[44] Meng Chyi Wu, “High Performance SiOx-Planarized Vertical-Cavity Surface-Emitting Lasers (VCSELs) for Fiber Optic Communications,”E.E, NTHU, 2008
[45] A. N. AL-Omari, O.M. Khreis, A. M. K. Dagamseh, A. Ababneh1, and K. L. Lear, “High-Speed Dielectric-Planarized 850nm Surface-Emitting Lasers with Metal-Plated Heat Sinks,”IEEE Xplore, no. 16602309, 2016
[46] C.Y. Chen, and W.C. Liu, “Light extraction enhancement of gan-based light-emitting diodes with textured sidewalls and ICP-transferred nanohemispherical backside reflector,” IEEE Transactions on Electron Devices, vol. 64, pp. 3672-3677, 2017.
[47] S.H. Kim, H.H. Park, Y.H. Song, H.J. Park, J.B. Kim, S.R. Jeon, H. Jeong, M.S. Jeong, and G.M. Yang, “An improvement of light extraction efficiency for GaN-based light emitting diodes by selective etched nanorods in periodic microholes,” Optics express, vol. 21, pp. 7125-7130, 2013.
[48] Yan-Kuin SuS, “tudy of Dry Etching Technology for Oxide-Confined VCSELs Fabrication,”Dep. DoP, NCKU, 2007.
[49] D. L. Dunson, in Synthesis and characterization of thermosetting polyimide oligomers for microelectronics packaging, Ph. D. dissertation, Univ. of Virginia Tech. (2000).
[50] R. O. Ebewele, in Polymer Science and Technology, CRC Press, New York, 2000.
[51] A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3787–3790,1996.
[52] J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, “All-silica single-mode fiber with photonic crystal cladding,” Opt. Lett., vol. 21, no. 19, pp. 1547–1549,1996.
[53] T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett., vol. 22, no. 13, pp. 961–963, 1997.
[54] Cheng C H, Shen C C, Kao H Y, Hsieh D H, Wang H Y, “850/940-nm VCSEL for optical communication and 3D sensing,” Opto-Electronic Advances,vol 1,no. 3, 2018.
[55] Westbergh P, Gustavsson J S, Haglund Å, Skold M, Joel A, “High-speed, low-current-density 850 nm VCSELs,” IEEE J Sel Top Quantum Electron, vol. 15, pp. 694–703, 2009.
[56] Healy S B, O’Reilly E P, Gustavsson J S, Westbergh P, Haglund, “Active region design for high-speed 850-nm VCSELs,” IEEE J Quantum Electron ,vol. 46, pp. 506–512, 2010.
[57] Lear K L, Mar A, Choquette K D, Kilcoyne S P, Schneider Jr R P, “High-frequency modulation of oxide-confined vertical cavity surface emitting lasers,” Electron Lett , vol 32, no. 457–458, 1996.
[58] Chang Y H, Kuo H C, Lai F I, Tzeng K F, Yu H C, “ High speed (>13 GHz) modulation of 850 nm vertical cavity surface emitting lasers (VCSELs) with tapered oxide confined layer,” IEE Proc-Optoelectron ,vol 152, pp. 170–173, 2005
[59] Ou Y, Gustavsson J S, Westbergh P, Haglund A, Larsson A, “Impedance characteristics and parasitic speed limitations of high-speed 850-nm VCSELs,” IEEE Photon Technol Lett ,vol. 21, pp. 1840–1842, 2009.
[60] Michael H. MacDougal, P. Daniel Dapkus, Aaron E. Bond, Chao-Kun Lin, Jon Geske, “Design and Fabrication of VCSEL’s with Alx Oy –GaAs DBR’s,” IEEE Jouranl of Selected Topics in Quantum Electronioc, vol. 3, NO. 3, 1997
[61] F. A. Kish, S. J. Caracci, N. Holonyak, Jr., J. M. Dallesasse, and K. C. Hsieh, “Planar native-oxide index-guided AlxGa1xAs-GaAs quantum well heterostructure lasers,” Appl. Phys. Lett., vol. 59, pp. 1755–1757, no 1991
[62] A. R. Sugg, N. Holonyak, Jr., J. E. Baker, F. A. Kish, and J. M. Dallesasse, “Native oxide stabilization of AlAs–GaAs heterostructures,” Appl. Phys. Lett., vol. 58, pp. 1199–1201, 1991
[63] T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron., vol. 48, no. 9, pp. 1107–1112, 2012.
[64] P. S. Yeh et al., “GaN-based vertical-cavity surface emitting lasers with sub-milliamp threshold and small divergence angle,” Appl. Phys. Lett., vol. 109, no. 24, no. 241103, 2016.
[65] T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, “Continuous wave operation of GaN vertical cavity surface emitting lasers at room temperature,” IEEE J. Quantum Electron., vol. 48, no. 9, pp. 1107–1112, 2012.
[66] E. Hashemi et al., “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Express, vol. 22, no. 1, pp. 411–426, 2014.
[67] S. M. Mishkat-Ul-Masabih, A. A. Aragon, M. Monavarian, T. S. Luk, and D. F Feezell, “Electrically injected nonpolar GaN-based VCSELs with lattice-matched nanoporous distributed bragg reflector mirrors,” Appl. Phys. Express, vol. 12, no. 3, no. 036504, 2019.
[68] ] S. A. Chalmers, K. L. Lear, and K. P. Killeen, “Low resistance wavelength-reproducible p-type (Al, Ga)As distributed Bragg reflectors grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 62, pp. 1585–1587, 1993.
[69] K. L. Lear and R. P. Schneider, Jr., “Uniparabolic mirror grading for vertical cavity surface emitting lasers,” Appl. Phys. Lett., vol. 68, pp. 605–607, 1996.
[70] S. W. Corzine, R. S. Geels, J. W. Scott, R.-H. Yan, and L. A. Coldren, “Design of Fabry–Perot surface-emitting lasers with a periodic gain structure,” IEEE J. Quantum Electron., vol. 25, pp. 1513–1524, 1989.
[71] D. Ahn and S. L. Chuang, “Optical gain in a strained-layer quantum well laser,” IEEE J. Quantum Electron., vol. 24, pp. 2400–2406, 1988
[72] J. A. Lott, R. P. Schneider, Jr., and K. J. Malloy, “Partial top dielectric stack distributed Bragg reflectors for red vertical cavity surface emitting laser arrays,” IEEE Photon. Technol. Lett., vol. 6, pp. 1397–1399, 1994.
[73] D. B. Young, J. W. Scott, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, and L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron., vol. 29, pp. 2013–2021, 1993.
[74] D. L. Huffaker, J. Shin, and D. G. Deppe, “Lasing characteristics of low threshold microcavity lasers using half-wave spacer layers and lateral index confinement,” Appl. Phys. Lett., vol. 66, pp. 1723–1725, 1995.
[75] K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., and S. P. Kilcoyne, “Modal analysis of a small surface emitting laser with selectively oxidized waveguide,” Appl. Phys. Lett., vol. 66, pp. 2616–2618,
[76] K. D. Choquette et al., “Fabrication and performance of selectivily oxidized vertical-cavity lasers,” IEEE Photon. Technol. Lett., vol. 7, pp. 1237–1239, 1995.
[77] K. D. Choquette, R. P. Schneider, Jr., K. L. Lear, and K. M. Geib, “Low threshold voltage vertical-cavity lasers fabricated by selective oxidation,” Electron. Lett., vol. 30, pp. 2043–2044, 1994.
[78] K. D. Choquette, K. L. Lear, R. P., Schneider, Jr., K. M. Geib, J. J. Figiel, and R. Hull “Wavelength Insensitive Performance of Robust Selectively Oxidized Vertical-Cavity Lasers,” Photon. Technol. Lett., vol. 7, pp. 1237–1239, 1995.
[79] G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current vertical-cavity surface emitting lasers obtained with selective oxidation,” Electron. Lett., vol. 31, pp. 886–888, 1995.
[80] K. L. Lear, K. D. Choquette, R. P. Schneider, Jr., S. P. Kilcoyne, and K. M. Geib, “Selectively oxidized vertical-cavity surface emitting lasers with 50% power conversion efficiency,” Electron. Lett., vol. 31, pp. 208–209, 1995.
[81]B. Weigl, M. Grabherr, G. Reiner, and K. J. Ebeling, “High efficiency selectively oxidized MBE grown vertical-cavity surface emitting lasers,” Electron. Lett., vol. 32, pp. 557–558, 1996.
[82] K. B. Yoon, I. K. Cho, and S. H. Ahn, “10-Gb/s data transmission experiments over polymeric waveguides with 850-nm wavelength multimode VCSEL array,” IEEE Photon. Technol. Lett., vol. 16, no. 9, pp. 2147–2149, 2004.
[83] Y. M. Wong et al., “Technology development of a high-density 32- channel 16-Gb/s optical data link for optical interconnection applications for the optoelectronic technology consortium (OETC),” J. Lightw. Technol., vol. 13, no. 6, pp. 995–1016, 1995.
[84] C. L. Tsai, F. M. Lee, F. Y. Cheng, M. C. Wu, S. C. Ko, H. L. Wang, and W. J. Ho, “Silicon oxide-planarized single-mode 850-nm VCSELs with TO package for 10 Gb/s data transmission,” IEEE Electron Device Lett., vol. 26, no. 5, pp. 304–307, 2005.
[85] L. D. Garrett, J. Qi, C. L. Schow, and J. C. Campbell, “A silicon-based integrated NMOS-p-i-n photoreceiver,” IEEE Trans. Electron Devices, vol. 43, no. 3, pp. 411–416, 1996.
[86] W. Hofmann, E. Wong, G. Bohm, M. Ortsiefer, N. H. Zhu, and ¨ M.-C. Amann, “1.55-µm VCSEL arrays for high-bandwidth WDMPONs,” IEEE Photon. Technol. Lett., vol. 20, no. 4, pp. 291–293, 2008.
[87] W. Hofmann, M. Gorblich, M. Ortsiefer, G. B ¨ ohm, and M.-C. Amann, ¨ “Long-wavelength (λ= 1.55 µm) monolithic VCSEL array with > 3 W CW output power,” Electron. Lett., vol. 43, pp. 1025–1026, 2007.
[88] W. Hofmann, M. Gorblich, M. Ortsiefer, G. B ¨ ohm, and M.-C. Amann, ¨ “Monolithic 2D high-power arrays of long-wavelength VCSELs,” in Proc. SPIE Photon. West, vol. 6908, pp. 690807-1–690807-7, 2008.
[89] K. Goto, “Proposal of ultrahigh density optical disk system using vertical cavity laser array,” Jpn. J. Appl. Phys., vol. 37, no. 4B, pp. 2274–2278, 1998.
[90] C. K. Lin, A. Tandon, K. Djordjev, S. W. Corzine, and M. R. T. Tan, “High speed 985 nm bottom emitting VCSEL arrays for chip-to-chip parallel optical interconnects,” IEEE J. Quantum Electron., vol. 13, no. 5, pp. 1332–1339, 2007.
[91] W. Yuen, G. S. Li, R. F. Nabiev, J. Boucart, P. Kner, R. J. Stone, D. Zhang, M. Beaudoin, T. Zheng, C. He, M. Jensen, D. P. Worland, and C. J. Chang-Hasnain, “High-performance 1.6 µm single-epitaxy top-emitting VCSEL,” Electron. Lett., vol. 36, no. 13, pp. 1121–1123, 2000.
[92] J. Boucart, C. Stark, F. Gaborit, A. Plais, N. Bouche, E. Derouin, L. Goldstein, C. Fortin, D. Carpentier, P. Salte, F. Brillouet, and J. Jacquet, IEEE Photon. Technol. Lett., vol. 11, p. 629, 1999.
[93] F. Koyama, T. Mukaihara, Y. Hayashi, N. Ohnoki, N. Hatori, and K. Iga, “Two-dimensional multiwavelength surface emitting laser arrays fabricated by nonplanar MOCVD,” Electron. Lett., vol. 30, pp. 1947–1948, 1994.
[94] G. G. Ortiz, S. Q. Luong, S. Z. Sun, J. Cheng, H. Q. Hou, G. A. Vawter, and B. E. Hammons, “Monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays by surface-controlled MOCVD growth rate enhancement and reduction,” IEEE Photon. Technol. Lett., vol. 9, pp. 1069–1071, 1997.
[95] Y. Zhou, S. Luong, C. P. Hains, and J. Cheng, “Oxide-confined monolithic, multiple-wavelength vertical-cavity surface-emitting laser arrays with a 40-nm wavelength span,” IEEE Photon. Technol. Lett., vol. 10, pp. 1527–1529, 1998.
[96] U. Fiedler, G. Reiner, P. Schnitzer, and K. J. Ebeling, “Top surface-emitting vertical-cavity laser diodes for lO-Gb/s data transmission,” IEEE Photon. Technol. Lett., vol. 9, pp. 746-748, 1996.
[97] M. Lebby, C. A. Gaw, W. Jiang, P. A. Kiely, C. L. Shieh, P. R. Claisse, J. Ramadani, D. H. Hartman, D. B. Schwartz, and J. Grula, “Use of VCSEL Arrays for Parallel Optical Interconnects,” Proc. SPIE, ‘Fabrication, Testing, and Reliability of Semiconductor Lasers’, vol. W. S. Ishak, K. H. Hahn, B. L. Booth, C. Mueller, A. A. J. Levi, and R. Craig, “Optical Interconnects - The POLO Approach,” Proc. SPIE, ‘Optoelectronic Interconnects 111 ’, vol. 2400, pp.214-221, 1995.
[98] S. Swirhun, M. Dudek, R. Neumann, J. Calkins, P. Brusenbach, D. Brinkmann, T. Northrop, A. Moore, D. Paananen, J. Scott, and T. White, “The P-VixeLink multichannel optical interconnect,” Proc. 46th H. Kosaka, M. Kajita, M. Yamada, Y. Sugimoto, K. Kurata, T. Tanabe, and Y. Kasukawa, “2D alignmentfree VCSEL-array module with a push/pull fibre connector,” Electron. Lett., Vol. 32, pp.1991-1992, 1996. 2683, pp.81-91, 1996.
[99] S. F. Yu, Analysis and design of vertical cavity surface emitting lasers, John Wiley & Sons, Inc., Hoboken, New Jersey, Chapter 2, 2003.
[100] D. L. Mathine, H. Nejad, and D. R. Allee, R. Droopad and G. N. Maracas, “Reduction of the thermal impedance of vertical-cavity surface-emitting lasers after integration with copper substrates,” Appl. Phys. Lett., Vol. 69, No. 4, pp. 463-464, 1996.