| 研究生: |
林冠宇 Lin, Kuan-Yu |
|---|---|
| 論文名稱: |
表面改質對奈米碳管之材料特性及儲氫量之影響研究 Materials Characteristics and Hydrogen Storage Capacity of Surface Modified Carbon Nanotubes |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 奈米碳管 、鎳 、鎳硼 、儲氫材料 、無電鍍鎳 |
| 外文關鍵詞: | CNTs, Nickel, Nickel-Boron alloy, Hydrogen Storage Materials, Electroless Nickel |
| 相關次數: | 點閱:134 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究對不同的奈米碳材之材料特性對其儲氫量的影響先做初步的探討,藉以瞭解何種材料特性對儲氫量有較顯著的影響。依據上述研究結果選用多壁奈米碳管為主要研究目標。研究中利用氣氛熱處理(氧化及還原氣氛)、負載金屬鎳及鎳硼合金等方式改變多壁奈米碳管表面之物化特徵,探討材料特性對其儲氫量之影響。研究中利用無電鍍法將金屬鎳及鎳硼合金負載於碳管上,並配合調整析鍍條件(鍍液濃度、析鍍時間、析鍍溫度等),使其均勻散佈在碳管上。實驗中利用掃瞄式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)對奈米級碳材的形貌與結晶性進行觀察、以物理氣相吸附儀量測其比表面積(BET)、以拉曼光譜儀(Raman spectra)分析其微結構,並以X光吸收光譜(XAS)技術分析其表面所鍵結的官能基。而在奈米碳材儲氫特性方面,則利用高壓熱重分析儀(HP-TGA)加以評估。實驗結果顯示管狀奈米碳材的儲氫量遠高於纖維狀者;而高結晶性、高表面積且均勻的管徑對奈米碳管的儲氫量有正面提升的效果。另外,碳材表面吸附異種官能基的多寡,對其儲氫量有相當重要的影響。
研究中探討還原氣氛(氨氣)及氧化氣氛(二氧化碳)對碳管材料性質及儲氫特性的影響。結果顯示碳管於1000 °C氨氣氣氛中進行的熱處理,有效地提升碳管之結晶性並增加其微孔洞體積,且在不破壞碳管本體結構的狀況下在管壁石墨層中間產生孔洞,增加了氣體進入碳管內部的路徑。因此氫氣就有較多的機會藉由氨氣熱處理造成的快速擴散路徑進入碳管內, 再加上碳管結晶性大幅提昇至I(D)/I(G)=0.88,可使氫氣停留在管內中空部份及石墨層間。經X光吸收光譜之結果可知,1000°C氨氣熱處理之碳管在經儲氫測試後,可在碳管上發現明顯的C-H鍵,這也表示氫以化學吸附的方式儲存在碳管上,因此儲氫量可高達2.9 wt%。碳管在氧化的環境進行熱處理,並無法得到如還原氣氛中一樣的效果,且在1000 °C下,碳管會因為劇烈氧化失重,導致結構的變化,由管狀結構變成片狀石墨,也因此失去了原材的儲氫特性。
藉由控制析鍍參數,如析鍍時間、析鍍溫度、鍍液中鎳離子濃度,可控制鎳及鎳硼合金在碳管上的分佈狀況及負載量。實驗結果可知,在析鍍溫度為5 °C,鎳沈積在碳管上的密度與析鍍時間成正比,且鎳顆粒的平均粒徑為2.3nm。當析鍍溫度提高時,鎳的沈積速度會增加,導致了粗大的鎳顆粒聚集在碳管上。在析鍍溫度為5 °C,析鍍時間為5分鐘,鍍液中鎳離子濃度為0.07M時,可以得到具有最佳分散性的負載鎳硼碳管,鎳硼之平均粒徑為5nm。原材奈米碳管之儲氫量為0.39wt%。鍍鎳碳管之儲氫量隨著鎳負載量的增加而增加,當鎳的負載量為10.1wt%時,則有一最大儲氫量值為1.27wt%。當鎳的負載量為9.2wt%時,且鍍鎳硼碳管具有大儲氫量值為1.12wt%。鍍鎳及鎳硼碳管儲氫量的增加,為spillover效應的影響,儲氫量為原材的3倍之多。隨著催化劑負載量的增加,spillover效應會減小甚至消失,這是應為過多的鎳負載量佔據了氫的有效吸附位置。
經氨氣熱處理之碳管上負載9.3wt%鎳時,其平均粒徑為1.3nm,儲氫量為1.55wt%。相較於原材奈米碳管上負載10.1wt%鎳時,其平均粒徑為2.4nm,儲氫量為1.27wt%。因spillover的效應使得負載鎳之氨氣熱處理之碳管有了較佳的儲氫量,且在負載之催化劑越均勻時,具有較佳的儲氫量值。負載鎳硼於經氨氣熱處理之碳管上,均無法提高碳管之儲氫量(相較於原材碳管負載鎳硼之式樣),其原因為在低負載鎳硼量的條件下,鎳硼團聚在局部位置,無法細緻且均勻的散佈在碳管上,因此降低了spillover之效果。鍍鎳及鎳硼合金之碳管,經高溫的氨氣熱處理後,因析鍍之催化劑要降低表面能,故形成較大尺寸之鎳及鎳硼顆粒而這些催化劑的粗大,進一步的影響到其散佈之均勻性,導致spillover之效應被稀釋。
Material characteristic of different type carbon nano materials (CNMs) and their hydrogen storage capacity were investigated. According to the experimental results, muti-wall carbon nanotubes (MWCNTs) was choose as base material. Heat treatment on CNTs in ammonia and carbon dioxide gas was performed and nano size Ni and Ni-B were dispersed on CNTs in this study. The microstructure of CNMs was examined with scanning electron microscope (SEM) and transmission electron microscope (TEM), electron diffraction analysis was used to identify the crystalline, specific area was measured with BET specific surface area analyzer. Furthermore Raman spectrum analysis was carried out to identify the structure of the CNMs and X-ray absorption spectroscope (XAS) was employed to observe the function group and bonding structure on the surface. Finally the hydrogen storage capacity of CNMs was evaluated with high pressure thermal gain analyzer (HPTGA) under 6.89MPa. The results showed that the hydrogen storage capacity of carbon nano tubes were higher than that of carbon nano fiber and amorphous carbon, and the crystalline、higher specific area was related to higher hydrogen storage capacity. Furthermore, the functional group was revealed to poor hydrogen storage capacity.
Heat treatment on multi-wall carbon nanotubes (CNTs) in ammonia gas was performed in this study. Effects of heating temperature (up to 1000◦C) on material characteristics of the CNTs were systematically investigated. It was found that hydrogen storage performance of the CNTs clearly depended on their microstructure and crystallinity, which can be modified by the heat treatment. The hydrogen storage capacity of the as-received CNTs, measured with a high-pressure microbalance under 6.89MPa, was only 0.39 wt%. However, this value can be significantly improved to be 2.9 wt% when the CNTs underwent a heat treatment conducted in the ammonia atmosphere at 1000◦C.
Ni and Ni-B decoration on carbon nanotubes (CNTs) performed by electroless nickel (EN) deposition is investigated. The effect of Ni particle distribution on hydrogen uptake of CNTs is also studied. The experimental results show that fine and well dispersed metallic Ni and Ni-B alloy nanoparticles can be obtained by EN. The density and particle distribution depend on deposition temperature, time and [Ni2+] in plating solution. An enhanced hydrogen storage capacity of CNTs can be obtained by Ni and Ni-B decoration, which provided a spillover reaction. The hydrogen storage capacity of the as-received CNTs was 0.39 wt%. As much as 1.27 wt% of hydrogen can be stored when uniformly distributed nano-size Ni particles are formed on the surface of the CNTs. be fabricated on CNTs, causing a notable hydrogen spillover reaction on the composite. The optimum hydrogen storage capacity of the prepared Ni-B decorated CNTs with a average diameter 5 nm, is 1.02 wt%. However, the beneficial effect is lost when the active sites for either physical or chemical adsorption are blocked by excessive Ni loading.
Effect of 1000◦C NH3 treated CNTs on the Ni and Ni-B deposited behavior and their hydrogen storage capacity are studied. 1000◦C NH3 treated CNTs can enhance the deposition rate of Ni and Ni-B. It is observed that Ni has a average particle size of 1.2 nm supported on NH3 treated CNTs and is well distributed , thus 9.3 wt% Ni decorated 1000◦C NH3 treated CNTs has a hydrogen storage capacity of 1.55 wt%. For Ni-B decorated NH3 treated CNTs, Ni-B clusters is observed resulting in reducing the hydrogen storage capacity of CNTs.
1. J. A. Barnes, Overview of Selected Battery and Fuel Cell Programs of the U.S.Department of Energy, 2004 Taipei International Power Forum, Taipei, Taiwan,December 1, 2004.
2. L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature ,414 (2001) 353.
3. K. L. Lim, H. Kazemian, Z. Yaakob, W. Daud, Solid-state materials and methods for hydrogen storage: a vritical review, Chem. Eng. Technol., 33 (2010) 213.
4. Hydrogen Storage Technologies Roadmap, U. S. C. f. A. R. (USCAR), 2005. (Available from: www.uscar.org/commands/files_download.php?files_id=82).
5. C. Liu, H. M. Cheng, Carbon nanotubes for clean energy applications, J. Phys. D, 38(2005) R231.
6. E. David, An overview of advanced materials for hydrogen storage, J. Mater. Process.Technol., 162–163 (2005) 169.
7. Y. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, S. B. Zhang, Hydrogen Storage in Novel Organometallic Buckyballs, Phys. Rev. Lett., 94 (2005) 155504.
8. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C.H. Kiang, D.S. Bethune, M.J. Heben,Storage of hydrogen in single-walled carbon nanotubes, Nature, 386 (1997) 377.
9. W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jinj, I. T. Han, Y. H. Lee, J. E.Jung, N. S. Lee, G. S. Park, J. M. Kim, Fully sealed high-brightness carbon-nanotubefield-emission display, Appl. Phys. Lett., 75(1999) 3129.
10. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, C. M. Lieber, Covalently functionalized nanotubes as nanometresized probes in chemistry and biology, Nature,
394 (1998) 52.
11. H. W. Zhu, A. Chen, Z. Q. Mao, C. L. Xu, X. Xiao, B. Q. Wei, J. Liang, D. H. Wu,The effect of surface treatments on hydrogen storage of carbon nanotubes, Mater. Sci. Lett., 19 (2000) 1237.
12. F. Liu, X. Zhang, J. Cheng, J. Tu, F. Kong, W. Huang , C. Chen, Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior,Carbon, 41 (2003) 2527.
13. A. Zuttel, P. Sudan, P. Mauron, P. Wenger, Model for the hydrogen adsorption on carbon nanostructures, Appl. Phys. A, 78 (2004) 941.
14. Y. S. Park , Y. C. Choi , K. S. Kim , D. C. Chung , D. J. Bae , K. H. An , S. C. Lim , X.Y. Zhu , Y. H. Lee , High yield purification of multiwalled carbon nanotubes by
selective oxidation during thermal annealing, Carbon, 39 (2001) 655.
15. S. R. C. Vivekchand, A. Govindaraj, M. M. Seikh, C. N. R. Rao, New method of purification of carbon nanotubes based on hydrogen treatment, J. Phys. Chem. B, 108(2004) 6935.
16. N. E. Tran, S. G. Lambrakos, Purification and defect elimination of single-walled carbon nanotubes by the thermal reduction technique, Nanotechnology, 16 (2005) 639.
17. L. C. Ci, H. W. Zhu, B. Q. Wei, C. L. Xu, Z. Q. Mao, D. H. Wu, Annealing amorphous carbon nanotubes for their application in hydrogen storage, Appl. Surf. Sci., 205 (2003)39.
18. K.Y. Lin, J. K. Chang, C. Y. Chen, W. T. Tsai, Effects of heat treatment on materials characteristics and hydrogen storage capability of multi-wall carbon nanotubes, Diam.
Relat. Mat., 18 (2009) 553.
19. S. T. Srinivas, P. K. Rao, Direct observation of hydrogen spillover on carbon-supported platinum and its influence on the hydrogenation of benzene, J. Catal., 148 (1994) 470.
20. R. Zacharia, K. Y. Kim, A. K. M. F. Kibria, K. S. Nahm, Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles, Chem. Phys. Lett., 412 (2005) 369.
21. A. Anson, E. Lafuente, E. Urriolabeitia, R. Navarro, A. M. Benito, W. K. Maser, M. T. Martinez, Hydrogen Capacity of Palladium-loaded carbon materials, J. Phys. Chem. B, 110 (2006) 6643.
22. L. Wang L, R. T. Yang, New sorbents for hydrogen storage by hydrogen spillover – a review, Energy Environ. Sci., 1 (2008) 268.
23. L. Wang , R. T. Yang, Hydrogen storage properties of carbons doped with ruthenium, platinum, and nickel nanoparticles, J. Phys. Chem. C, 112 (2008) 12486.
24. J. W. Lee, H. S. Kim, J. Y. Lee, J. K. Kang, Appl. Phys. Lett., 88 (2006) 143126.
25. C. Bittencourt, A. Felten, J. Ghijsen, J. J. Pireaux, W. Drube, R. Erni, Decorating carbon nanotubes with nickel nanoparticles, Chem. Phys. Lett., 436 (2007) 368.
26. S. Arai, M. Endo, N. Kaneko, Ni-deposited multi-walled carbon nanotubes by electrodeposition, Carbon, 42 (2004) 641.
27. Q. Li, S. Fan, W. Han, C. Sun, W. Liang, Coating of carbon nanotube with nickel by electroless plating method, Appl. Phys., 36 (1997) 501.
28. L. M. Ang, T. S. Andy, G. Q. Xu, C. H. Tung, S. Zhao, J. L. S. Wang, Electroless plating of metals onto carbon nanotubes activated by a single-step activation method,
Chem. Mater., 11 (1999) 2115.
29. F. Wang, S. Arai, M. Endo, The preparation of multi-walled carbon nanotubes with a Ni-P coating by an electroless deposition process, Carbon, 43 (2005) 1716.
30. A. Molnar, G.V. Smith, M. Bartok, New catalytic materials from amorphous metal alloys, Adv. Catal., 36 (1989) 329.
31. H. Li, H.X. Li, W.L. Dai, W.J. Wang, Z.G. Fang, J.F. Deng, XPS studies on surface electronic characteristics of Ni–B and Ni–P amorphous alloy and its correlation to their
catalytic properties, Appl. Surf. Sci., 152 (1999) 25.
32. C. Sealy, The problem with platinum, Materials Today, 11 (2009) 65.
33. J. A. Ritter, A. D. Ebner, J. Wang, R. Zidan, Implementing a hydrogen economy, Materials Today, 6 (2003) 18.
34. S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, The U.S. department of energy's national hydrogen storage project: progress towards meeting hydrogen-powered vehicle requirements, Catal. Today, 120 (2007) 246.
35. A. Zuttel, Hydrogen Storage Methods, Naturwissenshaften, 91 (2004) 157.
36. A. Zuttel, Materials for hydrogen storage, Materials Today, 6, (2003) 24.
37. J. A. Barnes, “Overview of Selected Battery and Fuel Cell Programs of the U.S. Department of Energy”, 2004 Taipei International Power Forum, Taipei, Taiwan,December 1, 2004.
38. R. Chahine, T.K. Bose, Low-pressure adsorption storage of hydrogen, Int. J. Hydrogen Energy, 19 (1994) 175.
39. J. Huot, G. Liang, S. Boily, A. V. Neste, R. Schulz, Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride, J. Alloys Compds., 293–295 (1999)
495.
40. S. Orimo, Y. Nakamori, J. R. Eliseo, A. Züttel, C. M. Jensen, Hydrogen: an overview,Chem. Rev., 107 (2007) 4111.
41. R. K. Ahluwalia, Recent challenges of hydrogen storage technologies for fuel cell vehicles, Int. J. Hydrog. Energy, 32 (2007) 1251.
42. H. H. Van Mal, K. H .J. Buschow, A. R. Miedema, Hydrogen absorption in LaNi5 and related compounds: Experimental observations and their explanation, Less-Common Met., 35 (1974) 65.
43. C. Liu, H. M. Cheng, Carbon nanotubes for clean energy applications, J. Phys. D, 38 (2005) R231.
44. E. David, An overview of advanced materials for hydrogen storage, J. Mater. Process. Technol., 162–163 (2005) 169.
45. Y. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, S. B. Zhang, Hydrogen Storage in Novel Organometallic Buckyballs, Phys. Rev. Lett., 94 (2005) 155504.
46. M. Hirscher, B. Panella, Hydrogen storage in metal-organic framworks, Scripta Materialia, 56 (2007) 809.
47. M. G. Nijkamp, J. E. M. J. Raaymakers, A. J. V. Dillen, K. P. D. Jong, Hydrogen storage using physisorption –materials demands, Appl. Phys. A: Mater, 72 (2001) 619.
48. A. D. Lueking, R. T. Yang, Hydrogen spillover to enhance hydrogen storage – study of the effect of carbon physicochemical properties, Appl. Cat. A, 265 (2004) 259.
49. G. E. Froudakis, Hydrogen interaction with carbon nanotubes : a review of ab initio studies, J. Phys., Condens. Matter., 14 (2002) R453.
50. J. Li, T. Furuta, H. Goto, T. Ohashi, Y. Fujiwara, S. Yip, Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures, J. Chem. Phys., 119 (2003),
2376.
51. T. Yildirim, O. Gulseren, S. Ciraci, Exohydrogenated single-wall carbon nanotubes,Phys. Rev. B, 64 (2001) 075404.
52. C. Peigney , C. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset, Specific surface area of carbon nanotubes and bundles of carbon nanotubes, Carbon, 39 (2001) 507.
53. B .K. Gupta, O. N. Srivastava, Further studies on microstructural characterization and hydrogenation behaviour of graphitic nanofibres, Int. J. Hydrogen Energy, 26 (2001)
857.
54. C .H. Chen, C. C. Huang, Enhancement of hydrogen spillover onto carbon nanotubes with defect feature, Micro. Meso. Mater., 109 (2008) 549.
55. H. Cheng, G. P. Pez, A. C. Cooper, Mechanism of hydrogen sorption in single-walled carbon nanotubes, J. Am. Chem. Soc., 123 (2001) 5845.
56. C. H. Chen, C. C. Huang, Hydrogen storage by KOH-modified multi-walled carbon nanotubes, J. Int. Hydrogen Energy, 32 (2007) 237.
57. H.W. Zhu, L. J. Ci , A. Chen, Z. Q. Mao, C.L. Xu, X. Xiao, B. Q. Wei, J. Liang, D.H .Wu. In: Z. Q. Mao, Veziroglu TN, editors., Proceedings of the 13th World Hydrogen
Energy Conference, Beijing, China, Published by InternationalHydrogen Association,2000, p. 560.
58. M. R. Smith, E. W. Bittner, W. Shi, J. K. Johnson, B. C. Bockrath, “Chemical Activation of Single-Walled Carbon Nanotubes for Hydrogen Adsorption ”, J. Phys. Chem. B, 107 (2003) 3752.
59. M. A. Callejas, A. Anson, A. M. Benito, W. Maser, J.L.G. Fierro, M. L. Sanjuán, M.T.Mart´ınez, “Enhanced hydrogen adsorption on single-wall carbon nanotubes by sample
reduction”, Mater. Sci. Eng. B, 108 (2004) 120.
60. B. P. Tarasov, J. P. Maehlen, M. V. Lototsky, V. E. Muradyan, V.A. Yartys, Hydrogen sorption properties of arc generated single-wall carbon nanotube, J. Alloy Compds.,
356–357 (2003) 510.
61. S. Nagasawa, M. Yudasaka, K. Hirahara, T. Ichihashi, S. Iijima, Chem. Phys. Lett.,Effect of oxidation on single-wall carbon nanotubes, 328 (2000) 374.
62. R. Zacharia, K. Y. Kim, A. K. M. F. Kibria, K. S. Nahm, Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles, Chem. Phys. Lett., 412 (2005) 369.
63. A. Anson, E. Lafuente, E. Urriolabeitia, R. Navarro, A. M. Benito, W. K. Maser, M. T.Martinez, Hydrogen Capacity of Palladium-loaded carbon materials, J. Phys. Chem. B, 110 (2006) 6643.
64 . C. K. Back, G. Sandi, J. Prakash, J. Hranisavljevic, Hydrogen sorption on palladium-doped sepiolite-derived carbon nanofibers, J. Phys. Chem. B, 110 (2006)16225.
65. R. T. Yang, Carbon, Hydrogen storage by alkali-doped carbon nanotubes – revisited,38 (2000) 623.
66. F. Pinkerton, B. Wickle, C. Olk, G. Tibbetts, G. Meisner, M. S. Meyer, Herbst J.Proceedings of the 10th Canadian Hydrogen Conference, Quebec, Canadian Hydrogen
Association, 2000.
67 . Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, M. Williams, P. Ndungu, M.V.Lototskyy, A. Nechaec, V. Linkov, S. Kulprathipanja, Int. J. Hydrogen Energy 34 (2009)
6669.
68. A. D. Lueking, R. T. Yang, Hydrogen spillover to enhance hydrogen storage—study of the effect of carbon physicochemical properties, J. Catal., 206 (2002) 165.
69. A. D. Lueking, R. T. Yang, Hydrogen Spillover from a Metal Oxide Catalyst onto Carbon Nanotubes—Implications for Hydrogen Storage, Appl. Catal. A, 265 (2004)259.
70. B. Pawelec, V. L. Parola, R.M. Navarro, S. M. Mascaros, J. L. G. Fierro, On the origin of the high performance of MWNT-supported PtPd catalysts for the hydrogenation of
aromatics, Carbon, 44 (2006) 84.
71. X. Li, I. M. Hsing, The effect of the Pt deposition method and the support on Pt dispersion on carbon nanotubes, Electrochimica Acta, 51 (2006) 5250.
72. G. W. Yang, G. Y. Gao, C. Wang, C. L. Xu, H. L. Li, Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation, Carbon, 46
(2008) 747.
73. C. Bittencourt, A. Felten, J. Ghijsen, J. J. Pireaux, W. Drube, R. Erni, Decorating carbon nanotubes with nickel nanoparticles, Chem. Phys. Lett., 436 (2007) 368.
74. S. Arai, M. Endo, N. Kaneko, Ni-deposited multi-walled carbon nanotubes by electrodeposition, Carbon, 42 (2004) 641.
75. X. Li, H. Zhu, C. Xu, Z. Mo, D. Wu, Measuring hydrogen storage capacity of carbon nanotubes by tangent-mass method, Int. J. Hydrogen Energy, 28 (2003) 1251.
76. W. Pan, X. Zhang, S. Li, D. Wu, Z. Mo, Measuring hydrogen storage capacity of carbon nanotubes by high-pressure microbalance, Int. J. Hydrogen Energy, 30 (2005)
719.
77. C. S. Tsao, M. S. Yu, T. Y. Chung, H. C. Wu, C. Y. Wang, K. S. Chang, H. L. Chen, Characterization of pore structure in metal-organic framework by small-angle X-ray scattering, J. Am. Chem. Soc., 129 (2007) 15997.
78. C. Y. Wang, C. S. Tsao, M. S. Yu, P. Y. Liao, T. Y. Chung, H. C. Wu, M. A. Miller, Y. R. Tzeng, Hydrogen storage measurement, synthesis and characterization of metal–organic frameworks via bridged spillover, J. Alloys Compd., 492(2010) 88.
79. P. Behrens, X-ray absorption spectroscopy in chemistry II. X-ray absorption near edge structure, Trends Anal. Chem., 11 (1992) 237.
80. J. G. Chen, NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides, and other interstitial compounds, Surf. Sci. Rep., 30 (1997) 1.
81. F. Turistra, J. L. Koening, Raman spectrum of graphite, J. Chem. Phys., 53 (1970)1126.
82. A. C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61 (2000) 14095.
83. P. A. Bruhwiler, Synchrotron studies of carbon Surface, J. Phys., Condens. Matter., 13(2001) 11229.
84. Y. H. Tang, T. K. Sham, Y. F. Hu, C. S. Lee, S. T. Lee, Near-edge X-ray absorption fine structure study of helicity and defects in carbon nanotubes, Chem. Phys. Lett., 366
(2002) 636.
85. S. C. Ray, H. M. Tsai, J. W. Chiou, B. Bose, J. C. Jan, K. kumar, W. F. Pong, D.Dasqupta, M. H. Tsai, X-ray absorption spectroscopy (XAS) study of dip deposited
a-C:H (OH) thin films, J. Phys. Condens. Matter., 16 (2004) 5713.
86. M. Q. Tran, C. Tridech, A. Alfrey, A. Bismarck, M. S. P. Shaffer, Thermal oxidative cutting of multi-walled carbon nanotubes, Carbon, 45 (2007) 2341.
87. W. Li, H. Zhang, C. Wang, Y. Zhang, L. XU, K. Zhu, Raman characterization of aligned carbon nanotubesproduced by thermal decomposition of hydrocarbon vapor, Appl. Phys. Lett., 70 (1997) 2684.
88. F. Li, Y. Wang, D. Wang, F. Wei, Characterization of single-wall carbon nanotubes by N2 adsorption, Carbon, 42 (2004) 2375.
89. T. V. Reshetenko, H. T. Kim, H. J. Kweon, Modification of cathode structure by introduction of CNT for air-breathing DMFC, Electrochimica Acta, 53 (2008) 3043.
90. Q. H. Yang, P. H. Hou, S. Bai, M. Z. Wang, H. M. Cheng, Adsorption and capillarity of nitrogen aggregated multi-walled carbon nanotubes, Chem. Phys. Lett., 345 (2001) 18.
91. H. Lee, Y.S. Kang, S.H. Kim, J.Y. Lee, Hydrogen desorption properties of multiwall carbon nanotubes with closed and open structures, Appl. Phys. Lett., 80 (2002)577.
92. B.K. Gupta, O.N. Srivastava, Synthesis and hydrogenation behaviour of graphitic nanofibres, Int. J. Hydrogen Energy, 25 (2000) 825.
93. M.K. Kostov, H. Cheng, A.C. Cooper, G.P. Pez, Influence of carbon curvature on molecular adsorptions in carbon-based materials: a force field approach, Phys. Rev. Lett., 89 (2002) 146105.
94. G. O. Mallory, J. B. Hajdu, Electroless Plating : Fundamentals and Applications, AESF,Orlando, 1991.
95. Y. Du, H. Chen, R. Chen, N. Xu, Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts, Appl. Catal. A, 277 (2004) 259.
96. W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells, J. Phys. Chem. B, 107 (2003) 6292.
97. T. V. Gaevskaya, I. G. Novotortseva, L. S. Tsybulskaya, The effect of boron on the microstructure and properties of electrodeposited nickel films, Met. Finish., 94 (1996) 100.
98. M. Anik, E. Körpe, E. Şen, Effect of coating bath composition on the properties of electroless nickel–boron films, Surf. Coat. Technol., 202 (2008) 1718.
99. T. V. Gaevskaya, I. G. Novotortseva, L. S. Tsybulskaya, The effect of boron on the microstructure and properties of electrodeposited nickel films, Met. Finish., 94 (1996) 100.
100. S. Wei, H. Oyanagi, Z. Li, X. Zhang, W. Liu, S. Yin, X. Wang, X-ray-absorption fine structure study on devitrification of ultrafine amorphous Ni-B alloys, Phys. Rev. B, 63 (2001) 224201.
101. J. Lawrence, G. Xu, High pressure saturation of hydrogen stored by single-wall carbon nanotubes, Appl. Phys. Lett., 84 (2004) 918.
102. M. Hirscher, B. Panella, Nanostructures with high surface area for hydrogen storage, J. Alloys Compd., 404 (2005) 399.
103. T. B. Massalski, O. Hiroaki, Binary alloy phase diagrams, ASM, Ohio, 1990.
104. P. Kondratyuk, J. T. Yates, Molecular views of physical adsorption inside and outside of single-wall carbon nanotubes, Acc. Chem. Res., 40 (2007) 995.
105. Z. Li, Y. Zhou, Y. Sun, Studies on the mechanism and capacity of hydrogen uptake by physisorption-based materials, Int. J. Hydrogen Energy, 31 (2006) 259.
106. A. J. Robell, E. V. Ballou, M. Budart, Surface diffusion of hydrogen on carbon, J. Phys. Chem., 68 (1964) 2748.
107. M. U. Niemann, S. S. Srinivasan, A. R. Phani, A. Kumar, D. Y. Goswami, E. K. Stefanakos, Nanomaterials for hydrogen storage applications: a review, J.Nanomaterials, 208 (2008)1.
108. M. Zielinski, R. Wojcieszak, S. Monteverdi, M. Mercy, M.M. Bettahar, Hydrogen storage on nickel catalysts supported on amorphous activated carbon, Catal. Comm., 6
(2005) 777.
109. J.W. Lee, H.S. Kim, J.Y. Lee, J.K. Kang, Hydrogen storage and desorption properties of Ni-dispersed carbon nanotubes,Appl. Phys. Lett., 88 (2006) 143126.
110. H.S. Kim, H. Lee, K.S. Han, J.H. Kim, M.S. Song, M.S. Park, J.Y. Lee, J.K. Kang, Hydrogen Storage in Ni Nanoparticle-Dispersed Multiwalled Carbon Nanotubes, J.
Phys. Chem. B, 109 (2005) 8983.
111. C. S. Tsao, Y. R. Tzeng, M. S. Yu, C. Y. Wang, H. H. Tseng, T. Y. Chung, H. C. Wu, T. Yamamoto, K. Kaneko, S. H. Chen, Effect of catalyst size on hydrogen storage capacity of Pt-impregnated active carbon via spillover, J. Phys. Chem. Lett., 1 (2010) 1060.
112. H. Jiang, L. Zhu, K. S. Moon, C. P. Wong, The preparation of stable metal particles on carbon nanotubes whose surfaces were modified during production, Carbon, 45 (2007)655.
113. V. Lordi, N. Yao, J. Wei, Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst, Chem. Mater., 13 (2001) 733.
114. R. Zacharia, K. Y. Kim, A. K. M. F. Kibria, K. S. Nahm, Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles, Chem. Phys. Lett., 412 (2005) 369.
115. A. Anson, E. Lafuente, E. Urriolabeitia, R. Navarro, A. M. Benito, W. K. Maser, M. T. Martinez, Hydrogen Capacity of Palladium-loaded carbon materials, J. Phys. Chem. B, 110 (2006) 6643.