簡易檢索 / 詳目顯示

研究生: 趙韋翔
Chao, Wei-Hsiang
論文名稱: 結合計畫行為理論、科技接受模式與慣性行為探討運具轉移行為:以涉入程度為干擾變數
Examining Theory of Planned Behavior, Technology Acceptance Model and habit on Mode Switching Behavior:Involvement as moderator
指導教授: 陳勁甫
Chen, Ching-Fu
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 82
中文關鍵詞: 科技接受模式涉入運具轉移計畫行為理論大眾運輸
外文關鍵詞: Technology acceptance model, Mode switching behavior, Public transit, Theory of planned behavior, Involvement
相關次數: 點閱:128下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何降低汽機車的使用量,進而促使一般大眾轉移至搭乘大眾運輸,一直以來是政府相關部門努力的目標,本研究以高雄地區為例,以整合計畫行為理論和科技接受模式(Combined TPB and TAM)為模式架構,並加入涉入程度作為區隔旅運者的變數,探討高雄地區的通勤旅客對於捷運轉移行為之關係。本研究和以往研究不同在於,過去研究多探討理性或慣性變數在運具選擇行為的影響關係,本研究則是整合計畫行為理論與科技接受模式,並加入涉入程度的影響探討運具轉移行為關係。
    本研究以高雄地區的通勤旅客為主要研究對象,在高雄地區的各大商圈、大眾運輸車站與公私有停車場進行問卷面訪,有效問卷樣本共得642份,資料分析方法採用結構方程模式,研究主要結論如下:一、大眾運具群組之運具轉移行為符合計畫行為理論之論述,認知有用性為主導通勤旅客持續搭乘捷運意願的重要關鍵因素;二、機車群組對於未來通勤搭乘捷運的意願影響,理性TPB變數的影響大於過去使用習慣,進而有可能轉移至搭乘捷運;三、小客車群組對於未來通勤搭乘捷運的意願受到過去使用習慣影響,進而不容易轉移至選擇搭乘捷運;四、高涉入群組在選擇運具時的決策行為較傾向於理性,未來轉移至捷運意願高;低涉入群組在運具選擇行為較傾向於慣性,本身抗拒改變原有的行為。
    根據研究結果顯示,為了鼓勵私人運具的通勤旅運者轉移至搭乘捷運,應致力提升通勤旅運者的捷運涉入程度,以市場導向的行銷手法來推廣大眾運輸,讓一般民眾體認到大眾運輸系統與生活密切的結合。

    How to reduce the use of automobiles and to encourage public transit have always been the fundamental policy goals of related government departments. This study,taking the level of involvement as the variable to segment travelers, concerns the mode switching behavior of commuters in Kaohsiung region based on the models of Combined TPB and TAM.
    Commuters in Kaohsiung region are the main object of study. After analyzing the questionnaire of 642 valid samples, which were collected in shopping centers, mass transit points, and public private parking lots in Kaohsiung region with the method of Structural Equation Modeling, the following four results could be drawn. First, public transit commuters’ mode choice behavior conforms to TPB stated and perceived usefulness is the key factor that affects the willingness of commuters to take MRT continuously. Second, concerning the willingness of motor commuters to take MRT in the future, the variable of TPB has greater impact than past habits, which means the group of motors tends to convert into MRT. Third, the groups of car drivers are strongly influenced by past habits and could not be easily converted into MRT. Last, the behavioral decision of the group with higher level of involvement shows greater tendency of rationality that also indicates a higher willingness of converting into MRT. In contrast, the group with lower level of involvement is obviously limited by past habits that lead to strong resistance to change present mode choice behavior.
    According to the results, managerial implication for increasing public transit ridership are also discussed.

    第一章 緒論...............................................1 第一節 研究背景與動機.................................1 第二節 研究目的.......................................4 第三節 研究範圍與對象.................................5 第四節 研究流程.......................................5 第五節 論文架構.......................................7 第二章 文獻回顧...........................................8 第一節 運具選擇行為及相關文獻.........................8 第二節 涉入理論與應用................................11 第三節 計畫行為理論..................................15 第四節 科技接受模式..................................20 第五節 探討變數間的關係..............................22 第三章 研究設計..........................................25 第一節 研究架構......................................25 第二節 研究變數的操作型定義、衡量與問卷設計..........26 第三節 資料收集與抽樣方式............................31 第四節 資料分析方法..................................32 第四章 實證分析與結果....................................36 第一節 受訪者基本資料分析............................36 第二節 各構面平均數分析..............................37 第三節 信度分析......................................41 第四節 運具別對主要變數之差異分析....................43 第五節 整體關係模式驗證性因素分析....................45 第六節 整體關係模式分析..............................50 第五章 結論與建議........................................67 第一節 研究結論......................................67 第二節 研究建議......................................69 第三節 研究限制與後續研究建議........................70 參考文獻.................................................71 一、中文部分.........................................71 二、英文部分.........................................72 附錄一 問卷調查表........................................79

    一、中文部分
    1.邱皓政(2003)。結構方程模式:LISREL 的理論、技術與應用。台北:雙葉書廊。
    2.楊家銘(2003),「機車使用者涉入程度與運具選擇過程影響因素之關聯性研究─以臺北市為例」,國立交通大學運輸科技與管理學系研究所碩士論文。
    3.陳順宇(2005)。多變量分析,四版。台北:華泰書局。
    4.林威成(2005),「旅運者觀點探討態度、涉入程度、群體影響力、行為意向與運具選擇行為之關連性研究─以臺北地區為例」,國立中山大學公共事務管理研究所碩士論文。
    5.賴文泰、呂錦隆(2008),「應用涉入理論於運具選擇行為之研究」,運輸計劃季刊,第三十七卷第二期,頁237-262。
    6.交通部統計處(2008),交通統計月報。網站來源:http://www.motc.gov.tw/mocwebGIP/wSite/ctxItem=4880&ctNode=167&mp=1,2009 (4)。
    7.高雄捷運公司(2008),高雄捷運每月運量統計表。網站來源:http://www.krtco.com.tw/manage/G01News/upFiles/20094715366.jpg,2009(3)。
    8.高雄市政府主計處(2008),「高雄市統計年報」。

    二、英文部分
    1.Ajzen, I., (1985) “From Intention to Actions: A Theory of Planned Behavior”, Action-Control: From Cognition to Behavior, Kuhl, J. and Beckmann, J. (Eds), Springer, Heidelberg, 11-39.
    2.Ajzen, I. and Madden, T. J. (1986) “Prediction of Goal-directed Behavior: Attitudes,Intentions, and Perceived Behavioral Control,” Journal of Experimental Social Psychology (22), 453-474.
    3.Ajzen, I. (1991) “The Theory of Planned Behavior”, Organizational Behavior and Human Decision Processes (50:2), 179-211.
    4.Abernethy A. M., and Franke, G. R.(1996),“The Information Content of Adverting:A Meta-Analysis", Journal of Adverting, 2, 1-17.
    5.Aarts, H., Verplanken, B., and van Knippenberg, A. (1997). “Habit information use in travel mode choices.” Acta Psychologica, 96(1), 1–14.
    6.Aarts, H., Verplanken, B., and van Knippenberg, A. (1998). “Predicting behavior from actions in the past: Repeated decision making or a matter of habit?” Journal of Applied Social Psychology, 28(15), 1355–1374
    7.Amoako-Gyampah, K, and Salam, A. F. (2004). “An extension of the technology acceptance model in an ERP implementation environment”, Information and Management, 41(6), 731-745.
    8.Ben-Akiva, M., McFadden, D., Garling, T., Gopinath, D., Walker, J., Bolduc, D., Bo‥rsch-Supan, A., Delquie’, P., Larichev, O.,Morikawa, T., Polydoropoulou, A., Rao, V., (1999). “Extended framework for modeling choice behavior”. Marketing Letters, 10 (3), 187–203.
    9.Bierlaire, M., (2002). “The network GEV model. In: Proceedings of Swiss Transport Research Conference, Monte Verita, March 20–22.
    10.Bamberg, S., Ajzen, I., and Schmidt, P. (2003). “Choice of travel mode in the theory of planned behavior: The roles of past behavior, habit, and reasoned action”, Basic and Applied Social Psychology, 25, 175–187.
    11.Bamberg, S., and Schmidt, P. (2003) “Incentives, morality or habit? Predicting students’ car use for university routes with the models of Ajzen, Schwartz and Triandis. Environment and Behavior, 35, 264–285.
    12.Bamberg, S., Rolle, D., and Weber, C.,(2003) “Dose Habitual Car Use Not Lead to More Resistance to Change of Travel Mode”, Transportation, 30, 97-108.
    13.Brickell, T. A., Chatzisarantis, N. L. D., and Pretty, G. M. (2006). “Using past behavior and spontaneous implementation intentions to enhance the utility of the theory of planned behavior in predicting exercise.” British Journal of Health Psychology, 11(2), 249–262.
    14.Celuch, K. G. and Slama, M. (1993), “Program Content and Advertising Effectiveness: A Test of the Congruity Hypothesis for Cognitive and Affective Sources of Involvement”, Psychology and Marketing, 10(4), 285-299.
    15.Chen, C., Gärling, T., and Kitamura, R. (2004). “Activity rescheduling: Reasoned or habitual?” Transportation Research Part F, 7(6), 351-371.
    16.Chen, C. D., Fan, Y. W., and Farn, C. K.(2007) “Predicting electronic toll collection service adoption: An integration of the technology acceptance model and the theory of planned behavior” Transportation Research Part C, 15, 300–311.
    17.Davis, F. D. (1989) “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology,” MIS Quarterly (13:3), 319-339.
    18.Fishbein, M. and Ajzen, I. (1975) “Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research”, Addison-Wesley, Reading, MA.
    19.Fujiwara, A., Sugie, Y., Moriyama, M., (2000). “Nested paired combinatorial logit model to analyze recreational touring behaviour”. In: Paper presented at theNinth International Association for Travel Behaviour Research Conference, Gold Coast, Queensland, Australia, July 2–7.
    20.Fujii, S. and Kitamura, R. (2003) “What Does a One-Month Free Bus Ticket to Do Habitual Drivers? An Experimental Analysis of Habit and Attitude Change”, Transportation, 30, 81-95.
    21.Fujii, S. and Garling, T. (2003) “Application of Attitude Theory for Improved Predictive Accuracy of Preference Method in Travel Analysis”, Transportation Research Part A, 37, 389-402.
    22.Fujiwara, A., Zhang, J., (2005). “Development of car tourists’ scheduling model for 1-day tour”. Transportation Research Record 1921, 100–111.
    23.Fu, J.R., Farn, C.K., Chao, W.P., (2006). “Acceptance of electronic tax filing: a study of taxpayer intentions”. Information and Management 43 (1), 109–126.
    24.Garling, T., Gillholm, R., and Garling, A., (1998) “Reintroducing Attitude Theory in Travel Behaviour Research: The Validity of an Interactive Interview Procedure to Predict Car Use”, Transportation, 25, 147-167.
    25.Garling, T., Fujii, S., and Boe, O., (2001) “Empirical Test of a Model of Determinants of Script-Based Driving Choice”, Transportation Research Part F, 4, 89-102.
    26.Garvill, J., Marell, A., and Nordlund, A. (2003) “Effects of Increased Awareness on Choice of Travel Mode”, Transportation, 30, 63-79.
    27.Gefen, D., Karahanna, E., and Straub, D. W. (2003). “Trust and TAM in online shopping: An integrated model”. MIS Quarterly, 27(1), 51–90.
    28.Gefen, D. (2004). “What makes an ERP implementation relationship worthwhile: linking trust mechanisms and ERP usefulness”. Journal of Management Information Systems, 21(1), 263–288.
    29.Gardner, B., and Abraham, C. (2008) “Psychological correlates of car use: A meta-analysis”. Transportation Research Part F, 11(4), 300–311.
    30.Gardner, B. (2009) “Modelling motivation and habit in stable travel mode contexts” .Transportation Research Part F, 12(1), 68-76.
    31.Houston, M. J. and Rothchild, M. L., (1978) “Conceptual and Methodological Perspectives in Involvement”, Research Frontiers in Marketing: Dialogues and Direction, Jain, S. (Ed.), Chicago.
    32.Baumgartner, H and Homburg, C., (1996). “Applications of structural equation modeling in marketing and consumer research: A review”, International. Journal of Research in Marketing, 13, 139-161.
    33.Johansson, V., Heldt, T., Johansson, P., (2006). “The effects of attitudes and personality traits on mode choice”. Transportation Research Part A: Policy and Practice, 40(6), 507-525.
    34.Krugman,H.E.(1965), “The Impact of Television Advertising Learning Without Involvement “, Public Opinion Quarterly, 29, 349-356.
    35.Kakkar, P. and R. J. Lutz (1975) “The Psychological Situation as a Determinant of Consumer Behavior”, in Advance in Consumer Research.
    36.Koppelman, F.S., Wen, C.H., (2000). “The paired combinatorial logit model: properties, estimation and application”. Transportation Research Part B, 34 (2), 75–89.
    37.Laurent, G. and Kapferer, J. N.(1985), “Measuring Consumer Behavior Profile”, Journal of Marketing Research, 22, 41-53.
    38.Mathieson, K., (1991). “Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior”. Information Systems Research 2 (3), 173–191
    39.McFadden, D. and Train, K., (2000) “Mixed MNL Model of Discrete Response”, Journal of Applied Econometrics, 15, 447-470.
    40.McFadden, D., (2001). “Economic choices”. American Economic Review, 91(3), 351–378.
    41.Park, C. W. and Young, S. M. (1986), “Consumer Response to Television Commercials: The Impact of Involvement and Background Music on Brand Attitude Formation”, Journal of Marketing Research, 23(1), 11-24.
    42.Pavlou, P. A. (2003). “Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model”. International Journal of Electronic Commerce, 7(3), 101–134.
    43.Robertson, T. S., Joan, Z. and Scott, W. (1984), Consumer Behavior, Scott Foresman and Company, New York.
    44.Swait, J., (2001). “Choice set generation within the generalized extreme value family of discrete choice models”. Transportation Research Part B, 35(7), 643–666.
    45.Swait, J., Adamowicz, W., van Bueren, M., (2004). “Choice and temporal welfare impacts: incorporating history into discrete choice models”. Journal of Environmental Economics and Management 47, 94–116.
    46.Taylor, S. and Todd, P. A.(1995) “Assessing IT Usage:The Role of Prior Experience,” MIS Quarterly, 19(2), 561-570.
    47.Verplanken, B., Aarts, H., and van Knippenberg, C., (1994) “Attitude Versus General Habit: Antecedents of Travel Mode Choice”, Journal of Applied Social Psychology, 24, 285-300.
    48.Verplanken, B., Aarts, H., and van Knippenberg, A. (1997) “Habit, Information Acquisition, and the Process of Making Travel Mode Choices”, European Journal of Social Psychology, 27, 539-560
    49.Verplanken, B., Aarts, H., van Knippenberg, A., and Moonen, A. (1998). “Habit versus planned behavior: A field experiment.” British Journal of Social Psychology, 37(1), 111–128.
    50.Venkatesh, V. and Davis, F. D. (2000) “A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies,” Management Science, 45(2), 186-204.
    51.Westbrook, R. A. and Claes, F. (1979), “Patterns of Information Source Usage Among Durable Goods Buyer”, Journal of Marketing Research, 16, 303-312.
    52.Wu, L., and Chen, J. L. (2005). “An extension of trust and TAM model with TPB in the initial adoption of on-line tax: An empirical study”. International Journal of Human–Computer Studies, 62(6), 784–808.
    53.Zaichkowshy, J. L., (1985) “Measuring the Involvement Construct”, Journal of Consumer Research, 12, 341-352.
    54.Zaichkowsky, J.L(1986), “Conceptualizing Involvement", Journal of Advertising , 15, 4-14.
    55.Zhang, J., Kuwano, M., Lee, B., Fujiwara, A., (2008). “Modeling household discrete choice behavior incorporating heterogeneous group decision-making mechanisms”. Transportation Research Part B: Methodological, In Press, Corrected Proof, Available online 7 July 2008
    56.Zhang, J., Timmermans, H.J.P., Borgers, A., Wang, D., (2004). “Modeling traveler choice behaviour using the concepts of relative utility and relative interest”. Transportation Research Part B, 38(3), 215–234.

    下載圖示 校內:2011-06-30公開
    校外:2014-06-30公開
    QR CODE