| 研究生: |
侯明鋒 Hou, Ming-Feng |
|---|---|
| 論文名稱: |
快速熱處理時的晶圓溫度均勻性 Temperature Uniformity of the Wafer in Rapid Thermal Processing |
| 指導教授: |
吳志陽
Wu, Chih-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 快速熱處理 、晶圓 、蒙地卡羅法 、溫度均勻性 |
| 外文關鍵詞: | Rapid Thermal Processing, RTP, MCM, Monte Carlo Method, Wafer |
| 相關次數: | 點閱:83 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以研究300mm晶圓在快速熱處理過程的溫度均勻性為目的,考慮中山科學研究院正在發展中的快速熱處理機台腔體內的熱傳,本文以蒙地卡羅法(MCM)計算加熱燈、腔體及晶圓之間的熱輻射交換,其結果再結合晶圓熱傳導的有限差分方程式,以求得快速熱處理過程晶圓溫度分佈,然後以Levenberg-Marquardt演算法求得在每個時間步驟使得溫度分佈最均勻的加熱燈功率分佈。
我們以MCM所得的結果與視因子法所得的結果比較,假如MCM的光子包數與視因子法的區塊數夠多時,此兩組結果便會相當一致。藉這些數值方法測試一些代表性的實例,從中我們發現:(一)在晶圓邊緣,會有較大的溫度差,這是由於部分熱輻射會穿過晶圓和保護環的間隙,並經反射盤反射回晶圓。(二)一些調整,如縮小該間隙、改變加熱燈或溫度量測位置及增加加熱燈的數目,可減少晶圓溫度非均勻性。這些調整當中,似乎以加熱燈數目的影響最大。
The purpose of this research is to examine the temperature uniformity of a 300mm wafer under rapid thermal processing (RTP). The heat transfer in the RTP chamber under development at CSIST is considered. This study adopts the Monte Carlo method (MCM) to calculate radiative heat exchange among the chamber, the lamps and the wafer. The result of the MCM is combined with the finite-difference solution of the heat conduction in the wafer to obtain the temperature distribution of the wafer in the RTP. Then, we apply the Levenberg-Marquardt algorithm, to obtain the lamp powers yielding the most uniform temperature distribution at each time step.
The results of the scheme using the MCM are compared with those obtained by the scheme using the view factors. The two sets of results are in good agreement, provided that the bundle number of the MCM and the zone number of the view factor method are large enough. Applying the numerical schemes developed to some typical cases, we find that a larger temperature variation usually occurs around the edge of the wafer. This is caused by the thermal radiation passing through the gap between the wafer and the guard ring and reflected by the bottom plate. Some adjustments, including decreasing the size of the gap, changing the position of the lamps or the temperature measurement, and increasing the number of the lamps, can reduce the nonuniformity of the wafer temperature. Among these adjustments, the effect of the numbers of the lamp seems to be most significant.
1. 紀崇仁, 晶圓快速熱處理模擬, 國立成功大學機械工程研究所碩士論文, 2002.
2. Glück, M., Lerch, W., Löffelmacher, D., Hauf, M., and Kreiser, U., 1999, “Challenges and Current Status in 300mm Rapid Thermal Processing,” Microelectronic Engineering, 45, pp. 237-246.
3. Kersch, A., and Schafbauer, T., 2000, “Thermal Modeling of RTP and RTCVD Processes,” Thin Solid Films, 365, pp. 307-321.
4. Knutson, K. L., and Campbell, S. A., 1994, “Modeling of Three-Dimensional Effects on Temperature Uniformity in Rapid Thermal Processing of Eight Inch Wafers,” IEEE Transactions on Semiconductor Manufacturing, 7, pp. 68-72.
5. Chen, Y., Booth, L., Schaper, C., Khuri-Yakub, B. T., and Saraswat, K. C., 1994, 3D Modeling of Rapid Thermal Processors for Design Optimization of a New Flexible RTP System, in Electron Devices Meeting, Technical Digest., International, San Francisco, CA , USA, pp. 545-548.
6. Lin, S., and Chu, H. S., 2000, “Thermal Uniformity of 12-in Silicon Wafer During Rapid Thermal Processing by Inverse Heat Transfer Method,” IEEE Transactions on Semiconductor Manufacturing, 13, pp. 448-456.
7. Lin, S., and Chu, H. S., 2001, “Thermal Uniformity of 12-in Silicon Wafer in Linearly Ramped-Temperature Transient Rapid Thermal Processing,” IEEE Transactions on Semiconductor Manufacturing, 14, pp. 143-151.
8. Lin, S., and Chu, H. S., 2002, “Application of Inverse Problem Algorithm for Temperature Uniformity in Rapid Thermal Processing,” Thin Solid Films, 402, pp. 280-289.
9. Hong, C. C., Yen, Y. R., Su, J. L., and Hwu, J. G., 2002, “Improvement in Ultrathin Rapid Thermal Oxide Uniformity by the Control of Gas Flow,” IEEE Transactions on Semiconductor Manufacturing, 15, pp. 102-107.
10. Choi, J. Y., Do, H. M., and Choi, H. S., 2001, “Adaptive Control of Wafer Temperature in RTP,” IEEE International Symposium on Industrial Electronics Proceedings, 2, pp. 1219-1224.
11. Choi, J. Y., and Do, H. M., 2001, “A Learning Approach of Wafer Temperature Control in a Rapid Thermal Processing System,” IEEE Transactions on Semiconductor Manufacturing, 14, pp. 1-10.
12. Kersch, A., 1995, “Development of RTP-Control with Monte Carlo Simulation,” Electrochemical Society Proceedings, 95-4, pp. 492-506.
13. Timans, P. J., 1998, “Rapid thermal processing technology for the 21st century,” Materials Science in Semiconductor Processing, 1, pp. 169-179.
14. Marquardt, D. W., 1963, “An algorithm for least-squares estimation of nonlinear parameters,” Journal of the Society for Industrial and Applied Mathematics, 11, pp. 431-441.
15. 蘇俊傑, 2000 , “快速熱處理製程之晶圓加熱模擬分析,” 第24屆, 中華民國力學學會暨全國力學會議, 中壢.
16. Hill, C., Jones, S., and Boys, D., 1989, Rapid Thermal Annealing-Theory and Practice, in Reduced Thermal Processing for ULSI, NATO ASI Series B: Physics, pp. 143-180.
17. Modest, M. F., 2003, Radiative Heat Transfer, 4th ed., McGraw Hill, New York.
18. 王振源及吳志陽, 2001, “快速熱處理機台即時溫度量測系統最佳化設計,” 機械關鍵系統技術研究發展第二期三年計劃,中山科學研究院.
19. Anderson, D. A., Tannehill, J. C., Pletcher, R. H., 1997, Computional Fluid Mechanics and Heat Transfer, 2nd ed., Taylor & Francis, London.