| 研究生: |
陳秉勣 Chen, Bing-Ji |
|---|---|
| 論文名稱: |
離心風扇舌尖外形對性能與噪音的影響 The Influence of the Tongue of Centrifugal Fan on Performance and Noise |
| 指導教授: |
陳世雄
Chen, Shih-Hsiung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 性能 、舌尖 、渦殼 、離心風扇 、噪音 |
| 外文關鍵詞: | centrifugal fan, volute, tongue, performance, noise |
| 相關次數: | 點閱:117 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於半導體技術的進步迅速,近年來電腦中央處理器運算速度已經大大的提升,晶片表面熱通量也就隨之越來越高。於是如何增加散熱效率帶走更多的熱量,使得系統更穩定也就成為很重要的課題。尤其空間小、散熱模組的阻抗大的筆記型電腦的散熱條件更是嚴苛,所以能產生較大風壓的離心風扇就常常成為首要考慮。
離心風扇除了葉片角度影響性能之外,渦殼的設計的好壞也對於性能有直接的影響。而渦殼舌尖部分流場特性非常不穩定,壓力的變化也相當劇烈。本論文以實驗的方式,研究渦殼舌尖對於整體性能及噪音的影響。在不改變風扇基本尺寸的前提之下,改變葉輪與舌尖的間隙(t)以及舌尖半徑(r),量測有著不同舌尖外形渦殼的離心風扇性能曲線以及噪音。
結果顯示,當t值(或r值)增加時最大流量會隨著增加,但是會有一極限值。最大壓力則是先稍微下降然後上升,變動幅度不像最大流量明顯。而噪音值對於t值(或r值)的大小的反應比最大流量和壓力更敏感。噪音會隨著t值(或r值)增加而大大的降低到一定程度,當流量不再明顯變化時,噪音的變化也跟著趨緩。
The computer CPU speed has been greatly increased in recent years due to a rapid progress in semi-conductor technologies. The chip surface heat flux is thus higher and higher accordingly. It is becoming a critical challenge on how to remove the heat so that the system can be run reliably. The compact space with high flow resistance in a notebook computer environment is even more critical in the heat removal. Centrifugal flow fan with higher air pressure is frequently chosen under such a consideration.
Not only the blade angle, but also the volute has direct influences on centrifugal fan performance. The flowfield near the tongue has large unsteady characteristics, including pressure fluctuations. The purpose of the present study is to experimentally investigate the tongue influence on performance and noise. The approach is to measure the fan performance curve and noise level with different gaps (t) (and radii (r)), while the basic fan dimension is unchanged.
The measured data indicate that the maximum flow increases with t and r until certain limit values. The maximum air pressure drops with t and r slightly and then goes up. The degree of maximum air pressure variation is less than that of the maximum flow rate. The noise is more sensitive than the maximum flow and pressure. It drastically drops with t and r till certain vale when the maximum flow rate does not have significant change.
[1] Howard, J.H.G., and Lennemann, E. “Measured and Predicted Secondary Flows in a Centrifugal Impeller,” ASME, Journal of Engineering for Power, Vol. 93, Jan. 1971, pp. 126 – 132.
[2] McDonald, G.B., Lennemann, E., and Howard, J.H.G., ”Measured and Predicted Flow Near the Exit of a Radial-Flow Impeller,” ASME, Journal of Engineering for Power, Vol. 93, Oct. 1971, pp. 441 – 446.
[3] Abramian, M., and Howard, J.H.G., “Experimental Investigation of the Steady and Unsteady Relative Flow in a Model Centrifugal Impeller Passage,” ASME, Journal of Turbomachinery, Vol. 116, Apr. 1994, pp. 269 – 279.
[4] Howard, J.H.G., and Kittmer, C.W., “Measured Passage Velocities in a Radial Impeller With Shrouded and Unshrouded Configurations,” ASME, Journal of Engineering for Power, Vol. 97, Apr. 1975, pp. 207 – 213.
[5] Dong, R., Chu, S., and Katz, J., “Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part A: Technique,” ASME, Journal of Fluid Engineering, Vol. 114, 1992, pp. 390 - 395.
[6] Dong, R., Chu, S., and Katz, J., “Quantitative Visualization of the Flow Within the Volute of a Centrifugal Pump. Part B: Results,” ASME, Journal of Fluid Engineering, Vol. 114, 1992, pp. 396 - 403.
[7] Chu, S., Dong, R., and Katz, J., “Relationship Between Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump. Part A: Use a PIV Data to Compute the Pressure Field,” ASME, Journal of Fluid Engineering, Vol. 117, Mar. 1995, pp. 24 – 29.
[8] Chu, S., Dong, R., and Katz, J., “Relationship Between Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump. Part B: Effects of Blade-Tongue Interactions,” ASME, Journal of Fluid Engineering, Vol. 117, Mar. 1995, pp. 30 – 35.
[9] Dong, R., Chu, S., and Katz, J., “Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure, and Noise in a Centrifugal Pump,” ASME, Journal of Turbomachinery, Vol. 119, Jul. 1997, pp. 506 – 515.
[10] Elholm, T., Ayder, E., and Van den Braembussche, R., “Experimental Study of the Swirling Flow in the Volute of a Centrifugal Pump,” ASME, Journal of Turbomachinery, Vol. 114, Apr. 1992, pp. 366 – 372.
[11] Liu, C.H., Vafidis, C., and Whitelaw, J.H., “Flow Characteristics of a Centrifugal Pump,” ASME, Journal of Fluid Engineering, Vol. 116, Jun. 1994, pp. 303 – 309.
[12] Wo, A.M., and Bons, J.P., “Flow Physics Leading to System Instability in a Centrifugal Pump,” ASME, Journal of Turbomachinery, Vol. 116, Oct. 1994, pp. 612 – 620.
[13] Lazzarotto, L., Lazzarotto, A., MarteGani, A.D., and Macor, A., “On Cross-Flow Fan Similarity Effects of Casing Shape,” ASME, Journal of Fluid Engineering, Vol. 123, Sep. 2001, pp. 523 – 531.
[14] Kaupert, Kevin A., and Staubli, Thomas, “The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller – Part I: Influence of the Volute,” ASME, Journal of Fluid Engineering, Vol. 121, Sep. 1999, pp. 621 – 626.
[15] Kaupert, Kevin A., and Staubli, Thomas, “The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller – Part II: Transient Hysteresis in the Characteristic,” ASME, Journal of Fluid Engineering, Vol. 121, Sep. 1999, pp. 627 – 632.
[16] Hamkins, C.P., and Flack, R.D., “Laser Velocimeter Measurements in Shrouded and Unshrouded Radial Flow Pump Impellers,” ASME, Journal of Turbomachinery, Vol. 109, Jan. 1987, pp. 70 – 76.
[17] 廖家堃,” 離心式鼓風機之流場與噪音研究, ”國立清華大學碩士論文,1997。
[18] 呂永泰,” 鼓風機渦卷殼之設計暨流場與聲場研究 ,”國立清華大學碩士論文,1998。
[19] 游昌隆,”橫流式風扇之流場與其引發噪音之研究,”國立清華大學碩士論文,2001。
[20] Wu, C.H., “A General Theory of Three0Dimentional Flow in Subsonic and Supersonic Turbomachines of Axial-Radial and Mixed Flow type,” NACA TN-2604, 1952.
[21] Miner, S.M., Flack, R.D., and Allaire, P.E., “Two-Dimensional Flow Analysis of a Laboratory Centrifugal Pump,” ASME, Journal of Turbomachinery, Vol. 114, Apr. 1992, pp. 333 – 339.
[22] Gu, F., Engeda, A., Mike, C., and Jean-Luc, D.L., “A Numerical Investigation on the Volute/Diffuser Interaction Due to the Axial Distortion at the Impeller Exit,” ASME, Journal of Fluid Engineering, Vol. 123, Sep. 2001, pp. 475 – 483.
[23] Aarts, R.G.K.M., and Jonker, J.B., “The Computation of Fluid-Induced Forces on Centrifugal Impellers Rotation and Whirling in a Volute Casing,” ASME Fluids Engineering Division Summer Meeting, FEDSM97-3328, 1997
[24] Tamm, A., Ludwig, G., Stoffel, B., “Numerical, Experimental and Theoretical Analysis of the Individual Efficiencies of a Centrifugal Pump,” ASME Fluids Engineering Division Summer Meeting, FEDSM2001-18071, 2001.
[25] Kelder, J.D.H., Dijkers, R.J.H., B.P.M. van Esch, and Krut, N.P., “Experimental and Theoretical study of the Flow in the Volute of a Low Specific-Speed Pump,” Fluid Dynamics Research 28, 2001, pp. 267-280.
[26] Sorokes, J., Borer, C., Koch, J., “Investigation of the Circumferential Static Pressure Non-Uniformity Caused by a Centrifugal Compressor Discharge Volute”
[27] 廖祿甫,”渦殼對離心式泵性能的影響,”國立成功大學航空太空工程學系碩士論文,1997。
[28] 游裕傑,” 離心式電腦風扇的設計與分析 ,”國立成功大學機械工程學系碩士論文,2002。
[29] Sandra Velarde-Suarez, Rafael Ballesteros-Tajadura, Carios Santolaria- Morros, Jose Gonzalez-Perez, “Unsteady Flow Pattern Characteristics Downstream of Forward-Curved Blades Centrifugal Fan,” ASME, Journal of Fluid Engineering, Vol. 123, JUN 2001, pp. 265 – 270.
[30] 許宏祺,”Pentium 4 筆記型電腦冷卻風扇之實驗研究,” 國立台灣科技大學機械工程學系碩士論文,2001。
[31] 商景泰,”通風機手冊,”機械工業出版社。
[32] CNS 8753,”風扇、鼓風機、壓縮機噪音及測定法,”中國國家標準,CNS 8753,Z8024。
[33] AMCA Standard 210, “Laboratory Method of Testing Fans for Aerodynamic Performance Rating,” Air Movement and Control Association International, Inc.
[33] CNS 7129,”聲度表,” 中國國家標準,CNS 7129,C7143。