簡易檢索 / 詳目顯示

研究生: 李嘉朗
Lei, Ka-Long
論文名稱: 在石墨烯中的電子波導
Electron Waveguide In Graphene
指導教授: 劉明豪
Liu, Ming-Hao
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 47
中文關鍵詞: 石墨烯奈米碳管電子波導單態
外文關鍵詞: Graphene, carbon nanotube, CNT, electron waveguide, single mode
相關次數: 點閱:176下載:57
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電子波導已經被證實能在石墨烯上實現。有團隊曾經利用懸空的石墨烯和電極閘做
    出了大概 300 奈米的波導管道 [1]。最近,有團隊實驗上利用奈米碳管做為電極閘而
    製造出寛度低至 1 奈米的波導管道 [2]。
    然而,此團隊的實驗中只有測量奈米碳管的電導值,這是在電子在石墨烯上有單態
    傳輸的一個徵兆,但卻沒有單態傳輸的最直接證據,也就是對石墨烯做傳輸測量。
    為了在理論上證明 [2] 裡所提到的主張並且提供一個可靠的指引給日後的實驗,我們
    考慮了跟 [2] 一樣的系統來模擬零溫下零雜質的石墨烯的量子傳輸。我們的模擬結果
    顯示,透過降低電流注入端和接收端的寬,百分之百的傳輸效率是有可能達到的。
    為了更明確的找出完美傳輸的必要條件,我們也給出了在不同的晶格方向、不同的
    波導方向、裝置的不同大小、石墨烯的乾淨程度等各種情況下的量子傳輸結果。

    Electron waveguide in graphene was previously reported using suspended samples with the guiding channel created by local gates of widths around 300 nm[1]. Very recently, using carbon nanotubes (CNT) as gating for the thinnest possible guiding channel down to 1nm in graphene was ”experimentally proposed” [2].
    However, in that report [2], only the signatures of single guided mode in graphene were reported by measuring the conductance of the CNT. No direct transport measurement on graphene was performed. To theoretically confirm the proposal of [2] and provide a reliable guide to future transport experiments, here we consider the geometry of [2] to perform quantum transport simulations in the fully ballistic limit at zero temperature. The results show that by narrowing down the width of the injector and detector, it is possible to achieve 100% of the guiding efficiency.
    Further detailed transport simulations have been performed considering various conditions, such as lattice direction, guiding channel orientation, size of the device, disorder scattering, and lead orientation in order to identify the conditions necessary for achieving perfect guiding.

    Chapter1. Introduction 1 1-1 Photon and Electron 1 1-2 Optical Fiber-like Chennel in Graphene 1 1-3 pn Channel in Graphene 2 1-4 Experimental Progress 2 1-5 Motivation and Outline 3 Chapter 2. Theory Background 5 2-1 Graphene 5 2-2 Band Theory 5 2-2-1 Tight-Binding Method (LCAOs method)[5] 6 2-2-2 The LCAOs Method in Graphene 12 2-2-3 Single Mode in Graphene 13 2-3 Transport Theory[7] 15 2-3-1 The Green's function 15 2-3-2 Retarded and Advanced Green's function 15 2-3-3 The Method of Finite Differences 16 2-3-4 Truncating the Matrix and Self-Energy 19 2-4 Scalable Tight-Binding Model for Graphene 21 Chapter 3. Results and Discussions 23 3-1 The Device 23 3-2 The Energy Band 24 3-3 Transport 26 3-3-1 The Standard Device 27 3-3-2 The Device with Rotated CNT 30 3-3-3 The Device with 90o Rotated CNT 31 3-3-4 The Device with Tiled Leads 33 3-3-5 Practical Device 37 3-3-6 Transport of Edge States 42 Chapter 4. Conclusion 46 References 47

    [1] Peter Rickhaus, Ming­Hao Liu, Péter Makk, Romain Maurand, Samuel Hess, Simon Zihlmann, Markus Weiss, Klaus Richter, and Christian Schönenberger. Guiding of
    electrons in a few­mode ballistic graphene channel. Nano Letters, 15(9):5819–5825,
    2015. PMID: 26280622.
    [2] Austin Cheng, Takashi Taniguchi, Kenji Watanabe, Philip Kim, and Jean­Damien Pillet. Guiding dirac fermions in graphene with a carbon nanotube. Phys. Rev. Lett.,123:216804, Nov 2019.
    [3] Vadim V. Cheianov and Vladimir I. Fal’ko. Selective transmission of dirac electrons and ballistic magnetoresistance of n−p junctions in graphene. Phys. Rev. B, 74:041403,Jul 2006.
    [4] J. R. Williams, Tony Low, M. S. Lundstrom, and C. M. Marcus. Gate­controlled guiding of electrons in graphene. Nature Nanotechnology, 6(4):222–225, Apr 2011.
    [5] G. Grosso and G.P. Parravicini. Solid State Physics. Elsevier Science, 2000.
    [6] C. W. J. Beenakker, R. A. Sepkhanov, A. R. Akhmerov, and J. Tworzydło. Quantum goos­hänchen effect in graphene. Phys. Rev. Lett., 102:146804, Apr 2009.
    [7] S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge Studies in Semiconductor Physi. Cambridge University Press, 1997.
    [8] Steven Chuang, Qun Gao, Rehan Kapadia, Alexandra C. Ford, Jing Guo, and Ali Javey. Ballistic inas nanowire transistors. Nano Letters, 13(2):555–558, 2013. PMID:23256503.
    [9] B. I. Halperin. Quantized hall conductance, current­carrying edge states, and the existence of extended states in a two­dimensional disordered potential. Phys. Rev. B,25:2185–2190, Feb 1982.
    [10] T. K. Gaylord, E. N. Glytsis, and K. F. Brennan. Semiconductor quantum wells as electron wave slab waveguides. Journal of Applied Physics, 66(4):1842–1848, 1989.
    [11] Peter Rickhaus, Péter Makk, Ming­Hao Liu, Endre Tóvári, Markus Weiss, Romain Maurand, Klaus Richter, and Christian Schönenberger. Snake trajectories in ultraclean graphene p–n junctions. Nature Communications, 6(1):6470, Mar 2015.
    [12] J. Milton Pereira, V. Mlinar, F. M. Peeters, and P. Vasilopoulos. Confined states and direction­dependent transmission in graphene quantum wells. Phys. Rev. B, 74:045424,Jul 2006.
    [13] Ming­Hao Liu, Peter Rickhaus, Péter Makk, Endre Tóvári, Romain Maurand, Fedor Tkatschenko, Markus Weiss, Christian Schönenberger, and Klaus Richter. Scalable tight­binding model for graphene. Phys. Rev. Lett., 114:036601, Jan 2015.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE