研究生: |
張鈺苹 Chang, Yu-Ping |
---|---|
論文名稱: |
自噬作用促使丙型干擾素誘發Jak2-STAT1活化及細胞發炎反應 Autophagy Facilitates IFN-gamma-induced Jak2-STAT1 Activation and Cellular Inflammation |
指導教授: |
林秋烽
Lin, Chiou-Feng |
學位類別: |
碩士 Master |
系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 80 |
中文關鍵詞: | 自噬作用 、丙型干擾素 、Jak2 、STAT1 、SHP2 、ROS 、發炎 |
外文關鍵詞: | Autophagy, IFN-γ, Jak2, STAT1, SHP2, ROS, Inflammation |
相關次數: | 點閱:91 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自噬作用 (autophagy) 是一種藉由自噬小體 (autophagosome) 將細胞內異常堆積的蛋白質或是細胞內老化或受損的胞器 (如粒線體) 進行包裹作用。自噬小體與溶酶體融合形成自噬溶酶體 (autophagolysosome) 並利用溶酶體內的酵素將包裹物清除以維持細胞存活及代謝平衡。近幾年的報導指出自噬作用參與在細胞對抗結核菌的感染過程中,被認為是一種細胞抵禦外來感染的機制。除此之外,丙型干擾素 (IFN-γ) 誘導的Irgs (IFN-inducible immunity-related GTPases) 蛋白能引發自噬作用的發生,然而其詳細的分子機制並不清楚。本研究中,我們證明自噬作用能促進丙型干擾素的訊號傳遞係以透過調控Jak2-STAT1進而影響細胞的發炎反應。在Atg5基因剔除 (Atg5-/-) 的小鼠胚胎纖維母細胞中,丙型干擾素刺激無法誘發自噬作用的產生;同時,丙型干擾素下游基因-干擾素調節因子1 (IRF-1) 的表現量也顯著的較為低下。利用第三型 PI3K (class III phosphatidylinositol 3-kinase) 的抑制劑3-MA (3-methyladenine) 抑制自噬作用的產生,也可以發現不管在小鼠胚胎纖維母細胞或是RAW264.7巨噬細胞皆可以抑制丙型干擾素誘發的自噬現象以及細胞發炎反應。在另一個Atg7基因剔除 (Atg7-/-) 的小鼠胚胎纖維母細胞也可以觀察到與Atg5-/-小鼠胚胎纖維母細胞有著同樣的效果,諸如無法形成自噬作用、較低的細胞發炎反應抑或是Jak2-STAT1活化受到抑制。在丙型干擾素訊息傳遞過程,負向調控因子包括SOCS1 (suppressor of cytokine signaling-1)、SOCS3和SHP2 (dual-phosphatase Src homology-2 domain-containing phosphatase) 參與其中的調控。透過shRNA (lentiviral-based short hairpin RNA) 抑制了SHP2的表現可增加丙型干擾素誘導的STAT1磷酸化表現量,顯示在Atg5-/-的細胞中SHP2扮演抑制丙型干擾素訊息傳遞的角色。此外,在缺乏自噬作用的細胞中,ROS (reactive oxygen species) 的表現和粒線體的含量都較高,並能活化SHP2進而抑制丙型干擾素的訊息傳遞及細胞發炎反應。綜合以上實驗結果,自噬作用能透過調控Jak2-STAT1的活性促進丙型干擾素的訊號傳遞,進而影響細胞的發炎反應。
Autophagy is a mechanism for degrading aggregated proteins and damaged organelles such as mitochondria, which has important roles in development, immune defense, programmed cell death, and neurodegeneration. Recent report showed that autophagy is a defense mechanism, which participated in host cell resistance to Mycobacterium. One way that autophagy participates in regulation of immunity is it enhances interferon (IFN)-γ-mediated antimicrobial efficacy; however, the effects of autophagy on IFN-γ signaling and bioactivaties remain unclear. In this study, we investigate that autophagy facilitates IFN-γ signal activation by regulating Janus kinase (Jak) 2 and signal transducer and activator of transcription (STAT) 1 signal and influencing cellular inflammation. Autophagy protein (Atg) 5 deficient (Atg5-/-) mouse embryonic fibroblasts (MEFs) are resistant to IFN-γ-induced light chain 3 (LC3) conversion as well as autophagosome formation. At the same time, IFN-γ-induced IFN regulatory factor 1 expression was significantly lower. We used 3-MA (3-methyladenine) which is a PI3K (class III phosphatidylinositol 3-kinase) inhibitor, inhibiting autophagy formation. Either MEFs or RAW264.7, which is macrophage like cell, inhibited IFN-γ-induced autophagy and cellular inflammation. Both of Atg5-/- and Atg7-/- MEFs are resistant to IFN-γ-activated Jak2-STAT1, which suggests autophagy has a potent role in IFN-γsignaling. There are negative regulator such as SOCS1 (suppressor of cytokine signaling-1), SOCS3, and SHP2 (dual-phosphatase Src homology-2 domain-containing phosphatase) in IFN-γ signal pathway. Inhibited SHP2 expression increase IFN-γ-induced STAT1 phosphorylation by shRNA (lentiviral-based short hairpin RNA), SHP2 play the inhibition role of IFN-γ signaling in Atg5-/- MEFs. In addition, increased reactive oxygen species (ROS) result from the absence of autophagy positively regulates SHP2, which inactivates STAT1. Image analysis shows that IFN-γ promotes co-localization of autophagosomes and ROS-producing mitochondria, which lead to the clearance of aged mitochondria. Atg5-/- MEFs fail to generate autophagy result in abundant ROS produced mitochondria exist. This study reveals a link between autophagy and IFN-γ signaling and bioactivities, and autophagy plays a pivotal role of Jak2-STAT1 through inhibition of ROS and SHP2 and influencing on cellular inflammation.
Al-Zeer, M.A., Al-Younes, H.M., Braun, P.R., Zerrahn, J., and Meyer, T.F. (2009).
IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy. PLoS One 4, e4588.
Amano, A., Nakagawa, I., and Yoshimori, T. (2006). Autophagy in innate immunity against intracellular bacteria. J Biochem 140, 161-166.
Andreyev, A.Y., Kushnareva, Y.E., and Starkov, A.A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc) 70, 200-214.
Bortoluci, K.R., and Medzhitov, R. (2010). Control of infection by pyroptosis and autophagy: role of TLR and NLR. Cell Mol Life Sci.
Brest, P., Corcelle, E.A., Cesaro, A., Chargui, A., Belaid, A., Klionsky, D.J., Vouret-Craviari, V., Hebuterne, X., Hofman, P., and Mograbi, B. (2010).
Autophagy and Crohn's disease: at the crossroads of infection, inflammation, immunity, and cancer. Curr Mol Med 10, 486-502.
Cecconi, F., and Levine, B. (2008). The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell 15, 344-357.
Cherra, S.J., 3rd, Dagda, R.K., and Chu, C.T. (2010). Review: autophagy and neurodegeneration: survival at a cost? Neuropathol Appl Neurobiol 36, 125-132.
Colasanti, M., Mollace, V., Cundari, E., Massoud, R., Nistico, G., and Lauro, G.M.
(1993). The generation of nitric oxide participates in gamma IFN-induced MHC class II antigen expression by cultured astrocytoma cells. Int J Immunopharmacol
15, 763-771.
Cooney, R., Baker, J., Brain, O., Danis, B., Pichulik, T., Allan, P., Ferguson, D.J., Campbell, B.J., Jewell, D., and Simmons, A. (2010). NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen
presentation. Nat Med 16, 90-97.
Costa-Pereira, A.P., Hermanns, H.M., Is'harc, H., Williams, T.M., Watling, D., Arulampalam, V., Newman, S.J., Heinrich, P.C., and Kerr, I.M. (2005). Signaling through a mutant IFN-gamma receptor. J Immunol 175, 5958-5965.
De Duve, C. (1963). The lysosome. Sci Am 208, 64-72.
Dreux, M., Gastaminza, P., Wieland, S.F., and Chisari, F.V. (2009). The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci
U S A 106, 14046-14051.
English, L., Chemali, M., Duron, J., Rondeau, C., Laplante, A., Gingras, D., Alexander, D., Leib, D., Norbury, C., Lippe, R., et al. (2009). Autophagy enhances the presentation of endogenous viral antigens on MHC class I molecules during HSV-1 infection. Nat Immunol 10, 480-487.
Fielhaber, J.A., Han, Y.S., Tan, J., Xing, S., Biggs, C.M., Joung, K.B., and Kristof, A.S. (2009). Inactivation of mammalian target of rapamycin increases STAT1 nuclear content and transcriptional activity in alpha4- and protein phosphatase 2A-dependent fashion. J Biol Chem 284, 24341-24353.
Gannage, M., and Munz, C. (2009). Autophagy in MHC class II presentation of endogenous antigens. Curr Top Microbiol Immunol 335, 123-140.
Geeraert, C., Ratier, A., Pfisterer, S.G., Perdiz, D., Cantaloube, I., Rouault, A., Pattingre, S., Proikas-Cezanne, T., Codogno, P., and Pous, C. (2010).
Starvation-induced hyperacetylation of tubulin is required for the stimulation of autophagy by nutrient deprivation. J Biol Chem.
Geng, J., and Klionsky, D.J. (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. 'Protein modifications: beyond the usual suspects' review series. EMBO Rep 9, 859-864.
Gutierrez, M.G., Master, S.S., Singh, S.B., Taylor, G.A., Colombo, M.I., and Deretic, V. (2004). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium
tuberculosis survival in infected macrophages. Cell 119, 753-766.
Hailey, D.W., Rambold, A.S., Satpute-Krishnan, P., Mitra, K., Sougrat, R., Kim, P.K., and Lippincott-Schwartz, J. (2010). Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141, 656-667.
Hanada, T., Noda, N.N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F., and Ohsumi, Y. (2007). The Atg12-Atg5 conjugate has a novel E3-like activity for
protein lipidation in autophagy. J Biol Chem 282, 37298-37302.
Harding, C.V., and Boom, W.H. (2010). Regulation of antigen presentation by Mycobacterium tuberculosis: a role for Toll-like receptors. Nat Rev Microbiol 8, 296-307.
He, B., Gross, M., and Roizman, B. (1997). The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A 94, 843-848.
Hu, X., and Ivashkiv, L.B. (2009). Cross-regulation of signaling pathways by interferon-gamma: implications for immune responses and autoimmune diseases.
Immunity 31, 539-550.
Igarashi, K., Garotta, G., Ozmen, L., Ziemiecki, A., Wilks, A.F., Harpur, A.G., Larner, A.C., and Finbloom, D.S. (1994). Interferon-gamma induces tyrosine phosphorylation of interferon-gamma receptor and regulated association of protein tyrosine kinases, JAK1 and JAK2, with its receptor. J Biol Chem 269, 14333-14336.
Kaur, N., Lu, B., Monroe, R.K., Ward, S.M., and Halvorsen, S.W. (2005). Inducers of oxidative stress block ciliary neurotrophic factor activation of JAK/STAT signaling in neurons. J Neurochem 92, 1521-1530.
Kirkegaard, K., Taylor, M.P., and Jackson, W.T. (2004). Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2, 301-314.
Klionsky, D.J. (2009). Crohn's disease, autophagy, and the Paneth cell. N Engl J Med 360, 1785-1786.
Klionsky, D.J., Abeliovich, H., Agostinis, P., Agrawal, D.K., Aliev, G., Askew, D.S., Baba, M., Baehrecke, E.H., Bahr, B.A., Ballabio, A., et al. (2008). Guidelines for
the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151-175.
Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., et al. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol
169, 425-434.
Kuma, A., Hatano, M., Matsui, M., Yamamoto, A., Nakaya, H., Yoshimori, T., Ohsumi, Y., Tokuhisa, T., and Mizushima, N. (2004). The role of autophagy during the early neonatal starvation period. Nature 432, 1032-1036.
Lee, H.K., Lund, J.M., Ramanathan, B., Mizushima, N., and Iwasaki, A. (2007).
Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315, 1398-1401.
Lee, H.K., Mattei, L.M., Steinberg, B.E., Alberts, P., Lee, Y.H., Chervonsky, A., Mizushima, N., Grinstein, S., and Iwasaki, A. (2010). In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32, 227-239.
Lee, J.S., Li, Q., Lee, J.Y., Lee, S.H., Jeong, J.H., Lee, H.R., Chang, H., Zhou, F.C., Gao, S.J., Liang, C., et al. (2009). FLIP-mediated autophagy regulation in cell
death control. Nat Cell Biol 11, 1355-1362.
Lee, L., Sudentas, P., and Dabora, S.L. (2006). Combination of a rapamycin analog (CCI-779) and interferon-gamma is more effective than single agents in treating a mouse model of tuberous sclerosis complex. Genes Chromosomes Cancer 45,
933-944.
Li, L., Zhang, X., and Le, W. (2010). Autophagy dysfunction in Alzheimer's disease. Neurodegener Dis 7, 265-271.
Ling, Y.M., Shaw, M.H., Ayala, C., Coppens, I., Taylor, G.A., Ferguson, D.J., and Yap, G.S. (2006). Vacuolar and plasma membrane stripping and autophagic elimination
of Toxoplasma gondii in primed effector macrophages. J Exp Med 203, 2063-2071.
Malmgaard, L. (2004). Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res 24, 439-454.
Martens, S., and Howard, J. (2006). The interferon-inducible GTPases. Annu Rev Cell Dev Biol 22, 559-589.
Martinet, W., De Meyer, G.R., Herman, A.G., and Kockx, M.M. (2005). Amino acid deprivation induces both apoptosis and autophagy in murine C2C12 muscle cells.
Biotechnol Lett 27, 1157-1163.
Mathew, R., Karp, C.M., Beaudoin, B., Vuong, N., Chen, G., Chen, H.Y., Bray, K., Reddy, A., Bhanot, G., Gelinas, C., et al. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062-1075.
McEwan, D.G., and Dikic, I. (2010). Not all autophagy membranes are created equal. Cell 141, 564-566.
Miller, C.H., Maher, S.G., and Young, H.A. (2009). Clinical Use of Interferon-gamma. Ann N Y Acad Sci 1182, 69-79.
Mizushima, N., and Klionsky, D.J. (2007). Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27, 19-40.
Mizushima, N., Levine, B., Cuervo, A.M., and Klionsky, D.J. (2008). Autophagy fights disease through cellular self-digestion. Nature 451, 1069-1075.
Nakagawa, I., Amano, A., Mizushima, N., Yamamoto, A., Yamaguchi, H., Kamimoto, T., Nara, A., Funao, J., Nakata, M., Tsuda, K., et al. (2004). Autophagy defends cells against invading group A Streptococcus. Science 306, 1037-1040.
Ogawa, M., Yoshimori, T., Suzuki, T., Sagara, H., Mizushima, N., and Sasakawa, C. (2005). Escape of intracellular Shigella from autophagy. Science 307, 727-731.
Ohsumi, Y. (2001). Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211-216.
Orvedahl, A., and Levine, B. (2008). Viral evasion of autophagy. Autophagy 4, 280-285.
Park, S.J., Kim, H.Y., Kim, H., Park, S.M., Joe, E.H., Jou, I., and Choi, Y.H. (2009). Oxidative stress induces lipid-raft-mediated activation of Src homology 2 domain-containing protein-tyrosine phosphatase 2 in astrocytes. Free Radic Biol Med 46, 1694-1702.
Saha, B., Jyothi Prasanna, S., Chandrasekar, B., and Nandi, D. (2010). Gene modulation and immunoregulatory roles of interferon gamma. Cytokine 50, 1-14.
Saitoh, T., Fujita, N., Jang, M.H., Uematsu, S., Yang, B.G., Satoh, T., Omori, H., Noda, T., Yamamoto, N., Komatsu, M., et al. (2008). Loss of the autophagy protein
Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264-268.
Schmid, D., and Munz, C. (2008). Localization and MHC class II presentation of antigens targeted for macroautophagy. Methods Mol Biol 445, 213-225.
Schmid, D., Pypaert, M., and Munz, C. (2007). Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input
from autophagosomes. Immunity 26, 79-92.
Schroder, K., Hertzog, P.J., Ravasi, T., and Hume, D.A. (2004). Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 75, 163-189.
Semple, F., Webb, S., Li, H.N., Patel, H.B., Perretti, M., Jackson, I.J., Gray, M., Davidson, D.J., and Dorin, J.R. (2010). Human beta-defensin 3 has immunosuppressive activity in vitro and in vivo. Eur J Immunol 40, 1073-1078.
Shimizu, S., Kanaseki, T., Mizushima, N., Mizuta, T., Arakawa-Kobayashi, S., Thompson, C.B., and Tsujimoto, Y. (2004). Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell
Biol 6, 1221-1228.
Shuai, K. (1999). The STAT family of proteins in cytokine signaling. Prog Biophys Mol Biol 71, 405-422.
Singh, S.B., Davis, A.S., Taylor, G.A., and Deretic, V. (2006). Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313, 1438-1441.
Street, S.E., Trapani, J.A., MacGregor, D., and Smyth, M.J. (2002). Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med
196, 129-134.
Stromhaug, P.E., Berg, T.O., Fengsrud, M., and Seglen, P.O. (1998). Purification and characterization of autophagosomes from rat hepatocytes. Biochem J 335 ( Pt 2),
217-224.
Subauste, C.S. (2009). Autophagy as an antimicrobial strategy. Expert Rev Anti Infect Ther 7, 743-752.
Subauste, C.S., Andrade, R.M., and Wessendarp, M. (2007). CD40-TRAF6 and autophagy-dependent anti-microbial activity in macrophages. Autophagy 3, 245-248.
Sumpter, R., Jr., and Levine, B. (2010). Autophagy and innate immunity: Triggering, targeting and tuning. Semin Cell Dev Biol.
Tal, M.C., and Iwasaki, A. (2009). Autophagic control of RLR signaling. Autophagy 5,749-750.
Tal, M.C., Sasai, M., Lee, H.K., Yordy, B., Shadel, G.S., and Iwasaki, A. (2009).
Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A 106, 2770-2775.
Talloczy, Z., Virgin, H.W.t., and Levine, B. (2006). PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy 2, 24-29.
Terman, A., Dalen, H., Eaton, J.W., Neuzil, J., and Brunk, U.T. (2003). Mitochondrial recycling and aging of cardiac myocytes: the role of autophagocytosis. Exp Gerontol 38, 863-876.
Tsai, C.C., Kai, J.I., Huang, W.C., Wang, C.Y., Wang, Y., Chen, C.L., Fang, Y.T., Lin, Y.S., Anderson, R., Chen, S.H., et al. (2009). Glycogen synthase kinase-3beta
facilitates IFN-gamma-induced STAT1 activation by regulating Src homology-2 domain-containing phosphatase 2. J Immunol 183, 856-864.
Vergne, I., Chua, J., and Deretic, V. (2003). Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med
198, 653-659.
Walsh, C.M., and Bell, B.D. (2010). T cell intrinsic roles of autophagy in promoting adaptive immunity. Curr Opin Immunol 22, 321-325.
Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102-1109.
Zheng, Y.T., Shahnazari, S., Brech, A., Lamark, T., Johansen, T., and Brumell, J.H. (2009). The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183, 5909-5916.