| 研究生: |
游家豪 Yu, Chia-hao |
|---|---|
| 論文名稱: |
低塑性細料對粉質砂土動態性質之影響 The Influence of Low Plastic Fines on Dynamic Properties of Silty Sands |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 139 |
| 中文關鍵詞: | 動力三軸試驗 、前期反覆荷重 、細粒料含量 、液化後體積應變 、液化阻抗 、整體孔隙比 |
| 外文關鍵詞: | Liquefaction resistance, Volumetric strain following liquefaction, Dynamic triaxial tests, Fines content, Previous cyclic loading, Global void ratio |
| 相關次數: | 點閱:232 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係以C.K.C動力三軸試驗儀,採用高雄苓雅區捷運橘線CO2區段LUO09聯絡通道上方之土壤,針對試體不同的整體孔隙比,藉由變化試體中不同的細粒料含量,先對重模試體施加前期反覆荷重,再進行動力三軸試驗,探討砂土受前期反覆荷重後,整體孔隙比與細粒料含量對於土壤抗液化強度之影響,並在試體破壞後,量測其體積變化,作為日後評估液化後沉陷量的依據。
根據試驗結果發現,在相同的整體孔隙比區間當中,土壤的液化阻抗會隨著細粒料含量的增加而降低,當細粒料含量超過40%時,其液化阻抗有漸趨一定值的傾向。若將試體之雙振幅軸向應變達5%時,即視為液化破壞的定義下,細粒料含量為60%之試體,其抗液化強度約比純淨砂土試體降低25%。
另外,在前期反覆荷重影響方面,針對試體相同的孔隙比區間而言,試體在承受前期反覆荷重後,體積應變與超額孔隙水壓激發百分比均會隨細粒料含量的增加而變大。
最後,在液化後體積應變方面,不論細粒料含量的多寡,液化前整體孔隙比越大的試體,其液化後的體積應變也越大;若以相同的整體孔隙比而言,液化後體積應變會隨著細粒料含量的增加而有上升的趨勢。
In this study, dynamic triaxial tests were conducted by CKC cyclic triaxial test system. The low-plastic sand with fines content over LUO09 areaway of orange line of Kaohsiung Metropolitan Mass Transit. The specimens are prepared by moist tamping at several global void ratio under different fines content. The purpose of this reaserch is to investigate the effect between global void ratio and fines content on the liquefaction resistance of soils after previous cyclic loading. The influence of liquefaction on volumetric strain were also studied for the understanding of the relationship of global void ratio and fines content.
According to the test results, liquefaction resistance of specimens decreases with increasing fines content of samples. As the fines content of samples over 40%, the liquefaction resistance would tend to a constant value gradually. This reaserch defines the liquefaction destruction as the double amplitude axial strain approaching 5% of specimens. The liquefaction resistance of the samples with fines content of 60% approximately reduces 25% than the samples with pure sand.
Besides, the part on the effect of previous cyclic loading, the volumetric strain and excess pore water ratio would both increase with increasing fines content when the specimens of the same global void ratio area are imposed with small previous cyclic loading.
Eventually, irrespective of the fines content, the volumetric strain following liquefaction of the samples is also larger with the samples of larger global void ratio before liquefaction. The volumetric strain following liquefaction of the samples have a rising trend along increasing fines content of samples.
1. Alarocn-Guzman, A., Leonards, G. A., AND Chameau, J. L., (1988) “Undrined Monotonic and Cyclic Strength of Sands,” Journal of Geotechnical Engineering, ASCE, Vol. 114, No. 10, Oct , pp. 1089-1108.
2. Carmine P. Polito, James R. Martin ., (2001) “Effects of nonplastic fine on liquefaction resistance of sands,” Journal of Geotechnical and Geoevironmental Engineering, ASCE, pp. 408-414.
3. Chaney, R. C., (1978) “Saturation effects on the cyclic strength of sands,” Earthquake Engineering and Soil Dynamics, ASCE, Vol. 1, pp. 342-358.
4. Chang, N. Y., Yeh, S. T., AND Kaufman, L. P., (1982) “Liquefaction potential of clean and silty sands,” Proceedings of the Third International Earthquake Microzonation Conference, Vol. 2, pp. 1017-1032.
5. Chien, Lien-Kwei, Oh, Yan-Nam AND Chang, Chih-Hsin, (2002) “Effect of fine content on liquefaction sterength and dynamic settlement of reclaimed soil,” Canadian Geotech. J., Vol. 39, pp. 1-12.
6. Chung, Kin Y. C., AND Wong, I. H., (1982) “Liquefaction potential of soils with plastic fines,” Soil Dynamics and Engineering Conference, Southampton, pp. 887-897.
7. EI Hosri, M. S., Biarez, H., Hicher, P. Y., (1984) “Liquefaction chacteristics of silty clay,” proc., 8th World Conf. on Earthquake Engrg., Prentice-Hall, Englewood Cliffs, N. J. Vol. 3, pp. 277-284.
8. Erten, D., AND Mather, M. H., (1995) “Cyclic undrained behavior of silty sand,” Soil Dynamics and Earthquake Engineering, Vol. 14, pp. 115-123.
9. Finn, W. D. L., Pickering, D. J., AND Bransby, P. L., (1971) “Sand Liquefaction in Triaxial and Simple Shear Test, ” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97,No. SM4, pp. 639-659.
10. Head, K. H., (1986) “Manual of soil laboratory testing,” Vol.3, ELE international limited, London.
11. Hazen, A., (1920) “Hydraulic fill dams,” ASCE, Vol.83,pp.1713-1745.
12. Ishibashi, I. M., Sherlif, M. A., AND Cheng, W. L., (1982) “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,”Soils and Foundations, JSSMEF, Vol. 22, No. 1, pp. 37-48.
13. Ishihara, K., (1993) Liquefaction and Flow Failure During Earthquakes, Geotechnique, Vol.43, No.3, pp.315-415.
14. Ishihara, K ., AND Tadatsu, H., (1979) “Effects of Over-consolidation ko Conditions on the Liquefaction Characteristics of Sands,” Soils and Foundations, Vol. 19, No. 4, pp. 59-68.
15. Ishihara, K., Troncoso, J., Kawase, Y., AND Takahashi, Y., (1980) “Cyclic strength characteristics of tailing materials,” Soil and Foundations, pp. 127-142.
16. Kramer, S. L.,(1996) “Geotechnical Earthquake Engineering,” Prentice Hall, New Jersey.
17. Koester, J. P.,(1993) “Effects of fines type and content on liquefaction potential of low-to-medium plasticity fine-grained soils,” Proc.,1993, Nat. Earthquake Conf., Central United States Earthquake Consortium, Memphis, Tenn., Vol. 1, pp. 67-75.
18. Kuerbis, R., Nequssey, D., AND Vaid, Y. P., (1988) “Effect of Gradation and Fines Content on the Undrained Response of Sand,” Geotechnical Special Publication, No. 21, ASCE, pp. 330-345.
19. Kaufman, L. P., (1981) “Percentage silt content in sand and its effect on liquefaction potential,” Ph.D. Thesis, University of Colorado.
20. Kiekbusch, M., AND Schuppener, B., (1977) “Membrane Penetration and Its Effect on Pore Pressures,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103,
No.CT11,pp.1267-1279.
21. Lade, P. V. AND Hernandez, S. B., (1977) “Membrane Penetration effect in undrained tests,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103,
No.CT2,pp.109-125.
22. Lee, K. L. AND Fitton, J. A., (1969) “Factors Affecting the Cyclic Loading Strength of Soil,” Vibration Effects of Earthquakes on Soils and Foundations, ASTM, STP 450, pp. 71-95.
23. Lee. K.L., AND Albaisa, A., (1969) “Earthquake Induced Settlements in Saturated Soil,” Vibration Effects of Earthquake on Soil and Foundations , ASTM, STP 450, pp.71-96.
24. Miura, S., AND Kawamura, S., (1996) “A Procedure Minizing Membrane Penetration Effects in Undrained Triaxial Test,” Soils and Foundations, Vol.36, No.4, pp.119-126.
25. Marcuson, W. F., (1978) “Definition of Term Related to Liquefaction,” Journal of Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 565-588.
26. Mulilis, J. P., (1975) “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of Sands,” Report No. EERC 75-18, U. C. Berkeley Earthquake Engineering Research Center.
27. Nagase, H., AND Ishihara, K., (1988) “Liquefaction-Induced Compaction and Settlement of Sand during Earthquakes,” Soils and Foundations, Vol. 28, No. 1, pp. 65-76.
28. Polito, C. P., AND Martin, J. R., (2001) “Effect of nonplastic fines on the liquefaction resistance of sands,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 127, No. 5, pp. 408-415.
29. Peacock, W. H., AND Seed, H. B., (1968) “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, SM3, pp. 689-708.
30. Singh, S., (1996) “Liquefaction characteristics of silts,” Geotechnical and Geological Engineering, Vol. 14, ASCE, pp. 1-19.
31. Sandoval, J., (1989) Liquefaction and Settlement characteristics of silt soils, Ph.D thesis, University of Missouri-Rolla, Mo.
32. Seed, H. B., Idriss, I. M., Makdidi, F., AND Banerjee, N., (1975) “Representation of Irregular Stress-Time Histories by Equivalent Uniform Stress Series in Liquefaction Analysis,” Report No. EERC 75-29, Earthquake Engineering Research Center, University of California at Berkeley.
33. Seed, H. B., AND Idriss, I. M., (1971) “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM9, pp. 249-274.
34. Seed, H. B., (1976) “Evaluation of Soil Liquefaction Effects on Level Ground during Earthquakes,” Liquefaction Problems in Geotechnical Engineering, pp. 1-104.
35. Seed, H. B., AND Lee, K. L., (1966) “Liquefaction of saturated sands during cyclic loading, ” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 92, No. SM6, pp. 105-134.
36. Seed, H. B., Tokimatsu, K., Harder, L. F., AND Chung R. M., (1985) “The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluation,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 12, pp. 1425-1445.
37. Shen, C. K., Vrymoed, J. L., AND Uyeno, C. K., (1977) “The effect of fines on liquefaction of sands,” Proceeding of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Vol. 2, pp.381-385.
38. Suzuki AND Toki, (1990) “Effect of Preshearing on Liquefaction Characteristics of Saturated Sand Subjected to Cyclic Loading,” Soils and Foundation, Vol. 30, No. 2, pp. 33-42.
39. The Japan Geotechnical Society, Remedial Measures Against Soil Liquefaction, Chapter2 “Cause of Liquefaction and Associated Effects on Structures,” pp. 11-18.
40. Thevanyagm, S., Fiorilb, M., AND Liang, J., (2000) “Effect of Non-Plastic Fines Undrained Cyclic Strength of Silty Sands,” Soil Dynamic and Liquefaction 2000, pp. 77-91、115-123.
41. Tianqiang Guo, Shamsher Prakash., (1999) “Liquefaction of Silts and Silt-Clay Mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 125, pp. 706-710.
42. Tronsco, J. H., (1990) “Failure risks of abandoned tailings dams,” Proceedings. Int. Symposium. on safety and Rehabilitation of Tailings Dams, CIGB ICOLD, Sydney, Australia, pp. 34-47、82-89.
43. Vaid, Y. P., (1994) “Liquefaction of Silty soils,” Ground Failures under Seismic Conditions, Geotechnical Special Publication, No. 44, ASCE, pp. 1-16.
44. Vaid, Y. P., Chern, J. C., AND Tumi, H., (1985) “Confining Pressure, Grain Angularity and Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 10, pp. 1229-1235.
45. Wang, W., (1979) “Some Findings in Soil Liquefaction,” Water Conservancy and Hydroelectric Power Scientific Research Institute, Beijing, China.
46. Wong, R.T., Seed, H.B., AND Chan, C.K., (1975) “Cyclic Loading Liquefaction of Gravelly Soils,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 101. No. GT6, pp. 571-583.
47. Xenaki, V. C., AND Athanasopoulos, G. A., (2003) “Liquefaction resistance of sand-silt mixtures:an experimental investigation of the effect of fines,” Soil Dynamics and Earthquake Engineering, Vol. 23, No. 3, pp. 183-194.
48. Yamamuro, J.A., AND Kelly, M., (2001) “Monotonic and cyclic liquefaction of very loose sands with high silt content,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, pp. 314-323.
49. Yamamuro, J. A., AND Poul V. Lade, (1999) “Experiments and Modeling of Silty Sands Susceptible to Static Liquefaction,” Mechanics of Cohesive-Frictional Meterials, Vol. 4, pp. 545-564.
50. Yoshimi, Y., Tanaka, K., AND Tokimatsu, K., (1988) “Liquefaction Resistance of Partially Saturated Sand,” Soils and Foundations, Vol. 29, No. 3, pp. 157-162.
51. 吳偉特、楊騰芳(1987),「細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁。
52. 吳偉特(1979),「台灣地區砂性土壤液化潛能之初步研究」,土木水利,第六卷,第二期 ,第39-70頁。
53. 胡紹敏、李維峰、陳景文(2004),「O2車站潛盾隧道到達工程災變原因探討」,地工技術,第105期,第35-46頁。
54. 紀雲曜(1997),「高雄縣永安沿海地區沖積層下陷及其潛能評估方法之研究」,國立成功大學土木工程系研究所,博士論文。
55. 范恩碩(2004),「以九二一集集地震案例探討細料對液化潛能評估之影響」,國立成功大學土木工程系研究所,博士論文。
56. 林國忠(1997),「反覆荷重作用下砂性土壤之變形行為研究」,國立成功大學土木工程系研究所,碩士論文。
57. 孫家雯(2001),「砂土細粒界定對液化強度之影響」,國立台灣大學土木工程系研究所,碩士論文。
58. 夏啟明(1992),「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文。
59. 許家豪(2003),「不同粒徑細粒料對土壤液化阻抗影響之研究」,國立成功大學土木工程系研究所,碩士論文。
60. 徐明同(1970),「台灣地區有感地震次數與振度之關係」,氣象學報告第十六卷第二期,第31-35頁。
61. 陳名利(1990),「以剪力模數評估砂土液化潛能之研究」,國立台灣工業技術學院工程技術研究所營建工程組,碩士論文。
62. 陳志安(1990),「不同程度影響因素對不同緊密度液化特性之研究」,國立台灣大學土木工程系研究所,碩士論文。
63. 陳守德(1986),「微量細料對砂性土壤液化潛能之影響」,國立台灣大學土木工程系研究所,碩士論文。
64. 陳卓然(1984),「過壓密與前期微震對台灣地區砂性土壤液化潛能之影響」,國立台灣大學土木工程系研究所,碩士論文。
65. 陳界文(2001),「細粒料特性對土壤抗液化強度之影響」,國立台灣大學土木工程系研究所,碩士論文。
66. 陳嘉裕(1999),「細粒料含量對沙土浪化潛能之影響研究」,國立成功大學土木工程學研究所,碩士論文。
67. 張清秀(1982),「黏土含量對福隆砂液化潛能之影響」,國立台灣大學土木工程系研究所,碩士論文。
68. 曾顯琳(1997),「過壓密對砂土穩定狀態及液化阻抗之影響」,國立台灣工業技術學院營建工程技術研究所,碩士論文。
69. 廖廷勖(1997),「過壓密對砂土動態性質及穩定狀態之影響」,國立台灣工業技術學院營建工程技術研究所,碩士論文。
70. 廖元憶(2005),「台灣西南沿海高細粒料含量砂土的探討」,國立成功大學土木工程系研究所,碩士論文。
71. 林智偉(2006),「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土木工程系研究所,碩士論文。
72. 楊沂恩(1984),「細料含量及塑性指數對砂土液化影響之研究」,國立成功大學土木工程系研究所,碩士論文。
73. 周鴻昇(1994),「NGI單剪應力定體積與不排水狀況下砂土行為之研究」,國立台灣大學土木工程系研究所,碩士論文。
74. 鄭文隆(1981),「淺談地震作用下基礎土壤液化及液化潛能評估法」,現代營建,第二卷,第一期。
75. 鐘瑞敏(1981),「砂土中黏土含量對液化潛能之影響」,國立台灣大學土木工程系研究所,碩士論文。
76. 財團法人臺灣營建研究院(2006),「高雄捷運工程橘線CO2區段標LUO09潛盾隧道坍陷原因鑑定報告」,初稿。