簡易檢索 / 詳目顯示

研究生: 張家盛
Chang, Chia-Sheng
論文名稱: 具一維或二維週期表面矽/金屬微米結構之矽基板輻射性質
Radiative Properties of a Silicon Substrate with 1-D or 2-D Metallic/Silicon Periodic Microstructures
指導教授: 陳玉彬
Chen, Yu-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 102
中文關鍵詞: 微/奈米製程輻射性質一/二維表面週期結構傅立葉轉換紅外線光譜儀嚴格耦合波理論
外文關鍵詞: Fourier Transform Infrared (FTIR) spectrometer, Micro/Nano-fabrication technology, Periodic structures, Radiative properties, Rigorous coupled-wave analysis (RCWA)
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 微/奈米製程技術近年來發展快速且成熟,因此藉由該技術製作表面週期結構,使材料具有波長偏好或極化方向選擇性質的輻射性質便不再困難,至今有相當多光學或能源轉換元件被設計並且實現,例如特定波段之濾波器和熱放射器。本研究目的在承襲實驗室既有研究成果,更深入且完整探討樣本結構「尺寸變化」、「形貌複雜」及「材料多樣」對輻射性質之影響及伴隨之物理機制。關注的樣本是雙面拋光之矽基板,上有金屬(Al、Cr和Ti)覆蓋矽結構或無金屬覆蓋之矽結構,而結構本身為一維或二維之週期微米結構,結構上表面則平行基本底面。文中係針對樣本在波長範圍2.5 μm 至 25 μm下的輻射性質做數值與實驗結果的對照,並且探討輻射性質頻譜中特殊現象之物理機制,以及性質隨結構尺寸、材料及入射極化方向的差異。研究分為三大部份︰結構實作、性質量測與數值模擬,其中週期結構的製作是透過微/奈米製程技術,在矽基板上進行曝光顯影、蝕刻、移除光阻與金屬蒸鍍這些步驟完成;輻射性質量測部份則是使用傅立葉轉換紅外線(FTIR)光譜儀,量測樣本在正向入射的穿透率與30度入射的反射率;而數值模擬是以嚴格耦合波理論(RCWA)為基礎,計算樣本的輻射性質與電磁場分佈。

    Recent advancement in micro/nano-fabrication has facilitated tailoring radiative properties with periodic structures of designed profiles. A lot of optical or energy conversion devices have been successfully realized, such as band filter and thermal emitter. The purpose of this work is to discuss more deeply and completely about radiative properties of samples influenced by dimension variation, morphology complexity, and material diversity with physical mechanisms following research results established by our laboratory. Radiative properties of a silicon substrate with 1-D or 2-D metallic (Al, Cr, and Ti)/silicon periodic microstructures are both numerically and experimentally investigated at wavelengths between 2.5 m and 25 m. This thesis is divided into three parts: structure fabrication, radiative properties measurements, and numerical study. First, the periodic structures are fabricated with lithography, dry etching, stripping the photoresist, and metal deposition. Second, normal transmittance and reflectance at oblique incidence from samples are measured by the Fourier Transform Infrared (FTIR) spectrometer. Third, simulation results based on the rigorous coupled-wave analysis (RCWA) is employed to calculate radiative properties and electromagnetic field distributions. In the end, measurement results are compared with the simulation ones to analyze the radiative properties. Unique features in spectra are explained with physical mechanisms.

    目錄 摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 vii 圖目錄 ix 符號表 xv 第一章 緒論 1 1.1背景介紹 1 1.2研究動機與目的 3 1.3造成特殊輻射性質常見之物理機制介紹 3 第二章 樣本製作與輻射性質量測 6 2.1樣本尺寸與光罩圖案 6 2.2 製程步驟及參數 11 2.2.1 完整製程 11 2.2.2蝕刻遭遇之問題及解決方法 20 2.3尺寸量測 24 2.4輻射性質量測方法及儀器介紹 33 第三章 數值理論 39 3.1薄膜光學 39 3.1.1 厚膜 39 3.1.2 薄膜 41 3.1.3多層薄膜 42 3.1.4基板鍍上多層薄膜 45 3.2嚴格耦合波理論 47 3.3 光譜平均法 50 第四章 結果與討論 52 4.1樣本量測結果 52 4.2光學常數驗證 54 4.3量測與模擬之結果與討論 57 4.3.1垂直入射之穿透率 58 4.3.2斜向入射光柵面之反射率 87 第五章 結論與未來工作 96 5.1結論 96 5.2未來工作 97 參考文獻 98

    參考文獻
    1. C. David, J. Bruder, T. Rohbeck, C. Grunzweig, C. Kottler, A. Diaz, O. Bunk, and F. Pfeiffer, "Fabrication of diffraction gratings for hard X-ray phase contrast imaging," Microelectronic Engineering 84, 1172-1177 (2007).
    2. D. Noda, M. Tanaka, K. Shimada, and T. Hattori, "Fabrication of diffraction grating with high aspect ratio using X-ray lithography technique for X-ray phase imaging," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46, 849-851 (2007).
    3. I. Yamada, K. Fukumi, J. Nishii, and M. Saito, "Infrared wire-grid polarizer with Y2O3 ceramic substrate," Optics Letters 35, 3111-3113 (2010).
    4. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, "Terahertz wire-grid polarizers with micrometer-pitch Al gratings," Optics Letters 34, 274-276 (2009).
    5. I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, "Transmittance enhancement of a wire-grid polarizer by antireflection coating," Applied Optics 48, 316-320 (2009).
    6. R. Dewan, and D. Knipp, "Light trapping in thin-film silicon solar cells with integrated diffraction grating," Journal of Applied Physics 106, 074901-1/7 (2009).
    7. Y. M. Song, J. S. Yu, and Y. T. Lee, "Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement," Optics Letters 35, 276-278 (2010).
    8. T. Ajito, T. Obi, M. Yamaguchi, and N. Ohyama, "Multiprimary color display for liquid crystal display projectors using diffraction grating," Optical Engineering 38, 1883-1888 (1999).
    9. I. Yamada, J. Nishii, and M. Saito, "Modeling, fabrication, and characterization of tungsten silicide wire-grid polarizer in infrared region," Applied Optics 47, 4735-4738 (2008).
    10. I. Yamada, K. Kintaka, J. Nishii, S. Akioka, Y. Yamagishi, and M. Saito, "Mid-infrared wire-grid polarizer with silicides," Optics Letters 33, 258-260 (2008).
    11. Y.-B. Chen, and M. J. Huang, "Infrared reflectance from a compound grating and its alternative componential gratings," Journal of the Optical Society of America B 27, 2078-2086 (2010).
    12. Y.-B. Chen, and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Optics Communications 269, 411-417 (2007).
    13. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill Professional ; London : McGraw-Hill, New York, 2007).
    14. M. Kreiter, J. Oster, R. Sambles, S. Herminghaus, S. Mittler-Neher, and W. Knoll, "Thermally induced emission of light from a metallic diffraction grating, mediated by surface plasmons," Optics Communications 168, 117-122 (1999).
    15. B. J. Lee, L. P. Wang, and Z. M. Zhang, "Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film," Optics Express 16, 11328-11336 (2008).
    16. L. P. Wang, and Z. M. Zhang, "Resonance transmission or absorption in deep gratings explained by magnetic polaritons," Applied Physics Letters 95, 111904-1/3 (2009).
    17. L. P. Wang, and Z. M. Zhang, "Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays," Journal of the Optical Society of America B 27, 2595-2604 (2010).
    18. F. Marquier, J. J. Greffet, S. Collin, F. Pardo, and J. L. Pelouard, "Resonant transmission through a metallic film due to coupled modes," Optics Express 13, 70-76 (2005).
    19. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," Journal of Computational and Theoretical Nanoscience 5, 201-213 (2008).
    20. L. P. Wang, and Z. M. Zhang, "Phonon-mediated magnetic polaritons in the infrared region," Optics Express 19, A126-A135 (2011).
    21. A. Hessel, and A. A. Oliner, "A new theory of Woods anomalies on optical gratings," Applied Optics 4, 1275-1297 (1965).
    22. D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, and S. Samora, "Demonstration of polarization-independent resonant subwavelength grating filter arrays," Optics Letters 35, 3201-3203 (2010).
    23. R. G. Mote, S. F. Yu, W. Zhou, and X. F. Li, "Design and analysis of two-dimensional high-index-contrast grating surface-emitting lasers," Optics Express 17, 260-265 (2009).
    24. Y.-B. Chen, and K. H. Tan, "The profile optimization of periodic nano-structures for wavelength-selective thermophotovoltaic emitters," International Journal of Heat and Mass Transfer 53, 5542-5551 (2010).
    25. H. Sai, H. Yugami, Y. Akiyama, Y. Kanamori, and K. Hane, "Spectral control of thermal emission by periodic microstructured surfaces in the near-infrared region," Journal of the Optical Society of America A 18, 1471-1476 (2001).
    26. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394, 251-253 (1998).
    27. X. Mellhaoui, R. Dussart, T. Tillocher, P. Lefaucheux, P. Ranson, M. Boufnichel, and L. J. Overzet, "SiOxFy passivation layer in silicon cryoetching," Journal of Applied Physics 98, 104901-1/10 (2005).
    28. D. B. Graves, "Plasma processing," IEEE Transactions on Plasma Science 22, 31-42 (1994).
    29. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (CRC Press, Boca Raton, FL, 2001).
    30. F. A. Settle, Handbook of Instrumental Techniques for Analytical Chemistry (Prentice Hall PTR ; London : Prentice-Hall International (UK), Upper Saddle River, N.J., 1997).
    31. Y.-B. Chen, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of submicron metallic slit arrays," Journal of Heat Transfer-Transactions of the ASME 130, 082404-1/8 (2008).
    32. B. J. Lee, V. P. Khuu, and Z. M. Zhang, "Partially coherent spectral transmittance of dielectric thin films with rough surfaces," Journal of Thermophysics and Heat Transfer 19, 360-366 (2005).
    33. S. Hava, J. Ivri, and M. Auslender, "Wavenumber-modulated patterns of transmission through one- and two-dimensional gratings on a silicon substrate," Journal of Optics A: Pure and Applied Optics 3, S190-S195 (2001).
    34. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworths, London, 1955).
    35. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," Journal of the Optical Society of America A 12, 1068-1076 (1995).
    36. S. Peng, and G. M. Morris, "Efficient implementation of rigorous coupled-wave analysis for surface-relief gratings," Journal of the Optical Society of America A 12, 1087-1096 (1995).
    37. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Orlando, 1985).
    38. S. Basu, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of heavily doped silicon at room temperature," Journal of Heat Transfer-Transactions of the ASME 132, 023301-1/8 (2010).
    39. X. J. Yu, and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," Journal of Applied Physics 93, 4407-4412 (2003).
    40. E. Hecht, Optics (Addison-Wesley, San Francisco ; London, 2002).

    無法下載圖示 校內:2019-08-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE