| 研究生: |
許育甄 Hsu, Yu-chen |
|---|---|
| 論文名稱: |
固態接合SAC305/Cu界面接合強度與破壞面組織解析及統計分析 Studies on the Adhesive Strength and Failure Behaviors of Solid-state Bonded SAC305/Cu Joint and its Statistical Analysis |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 陳立輝 Chen, Li-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 機械性質 、無鉛銲錫 |
| 外文關鍵詞: | intermetallic compounds, Failure Behaviors, SAC305 |
| 相關次數: | 點閱:97 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗所探討之SAC305無鉛銲錫合金為Sn-3.0Ag-0.5Cu的三元合金,其熔點為217 C。由於電子產品的可靠度與銲點與基板界面的介金屬化合物 (Intermetallic compound, IMCs)的機械性質有關,且文獻指出拉球測試(Ball Pull test)中,垂直於界面拉伸方向的應力是造成銲點破壞的主因。因此本實驗以接近熔點的210 C、改變不同界面IMCs成長處理時間 (5、7.5、9、10、15、20hrs),進行SAC305/Cu之固態擴散接合;以拉伸試驗量測錫銅界面的接合強度 (Adhesive strength, ),並在拉伸試驗前後,以SEM及EDS進行SAC305無鉛銲錫合金與金屬銅基材之界面和破壞面的組織分析及觀察。其中由EDS及X-ray結果可以得知錫銅介面形成的介金屬化合物為Cu6Sn5、Cu3Sn;從SEM觀察得知IMCs的整體厚度、Cu6Sn5層及Cu3Sn層厚度並未隨著IMCs成長處理之時間增加而增加。
拉伸試驗後,由SEM觀察錫銅破壞界面的縱剖面,發現破壞路徑大多行經Cu6Sn5層,少數發生在Cu3Sn層及Cu3Sn/Cu界面處。隨著210℃的IMC成長處理時間增加(5、7.5、9、10、15、20hrs),拉伸試驗結果依據接合強度之高低分佈可分成三區:第一區的5hrs條件下,接合強度低於5MPa,應為IMCs成長不足使接合不完全;第二區為7.5 hrs、9 hrs、10 hrs等條件,此區相較其他條件有較高的接合強度,平均接合強度為20MPa左右,配合5 hrs、7.5 hrs、9 hrs、10 hrs之破壞面表面觀察結果,發現當破壞路徑經過Cu6Sn5層比例增加時,拉伸強度也跟著增加。韋伯解析結果顯示隨著IMCs成長處理的時間增加,特徵接合強度下降,數據分佈變廣;第三區之15 hrs、20 hrs條件的平均接合強度皆小於3MPa。比較5hrs、7.5hrs、15hrs錫銅界面之EPMA分析結果,Ag3Sn生成於Cu6Sn5層接近SAC305處,且其含量隨著IMC成長處理時間增加,可能是使界面接合強度於下降的因素之一 。
The formation of intermetallic compounds (IMCs) helps to provide good metallurgical bonding between solders and substrate in the microelectronic packing applications. Previous reports pointed out that the tensile stress is a main cause induces the fracture of solder joints during the Ball Pull tests. Owing to the above-mentioned reasons, this study attempts to find out an optimal interfacial IMCs growing condition between SAC305 and copper substrate through performing the solid-state bonding process with 210C IMCs growth treatments and different time (5, 7.5, 9, 10, 15, 20 hrs). The variation of interfacial adhesion strength, bonding reliability and failure behaviors were examined. Tensile tests were applied to measure the interfacial adhesive strength of SAC305/Cu bonding.
The tensile test results have obvious difference with different IMCs growth treatment time. With 7.5~10 hrs IMCs growth treatment, average adhesive strength are around 20MPa and much higher than others. Besides, the results of Weibull analysis of 7.5, 9, 10 hrs show the adhesive strength and the bonding reliability are decreased with increasing heating time, and 7.5 hrs specimens has the highest characteristic strength of SAC305/Cu interfacial bonding, less data fluctuation and a left-shift wear-out failure model of increasing failure rate (IFR). As the result, the optimal IMCs growing condition is 7.5 hrs.
From the cross-sectional observation of SEM and Weibull model, the cracks propagate through the Cu6Sn5 IMCs layer can help reliability and adhesive strength increase. Besides, according to the results of EPMA analysis, the forming of Ag3Sn at the interface of SAC305/Cu is propagate with IMCs growth treatment time and it may be one of the reasons that average adhesive strength is decease with IMCs growth treatment time.
1. P. T. Vianco and D. R. Frear, “Issue in the Replacement of Lead-Bearing Solders”, Journal of the Minerals, Metals and Materials Society, Vol.45, No. 7, pp. 14-19, 1993.
2.. D. Frear, J. Jang, J. Lin, C. Zhang, “Pb-free solders for flip-chip interconnects”, Journal of the Minerals, Metals and Materials Society, Vol.53, No.6, pp. 28-33, 2001.
3. K. Erickson, P. Hopkins, P. Vianco, “Modeling the Solid-State Reaction Between Sn-Pb Solder and a Porous Substrate Coating”, Journal of Electronic Materials, Vol.27, No.11, pp. 1177-1192, 1998.
4. P. Vianco, A. Kilgo, R. Grant, “Intermetallic compound layer growth by solid state reactions between 58Bi-42Sn solder and copper”, Journal of Electronic Materials, Vol.24, No. 10, p. 1493-1505, 1995.
5. M. Shaefer, W. Laub, R. Fournelle, J. Liang, Design and reliability of solders and solder interconnections, in: R.K. Mahidhara, D.R. Frear, S.M. Sastry, K. Murty, P. Liaw, W. Winterbottom (Eds.), The Minerals, Metals and Materials Society, TMS/AIME, Warredale, USA, 1997.
6. J.K. Kivilahti, K. Kulojarvi, in: R.K. Mahidhara (Ed.), Proceedings of the TMS Annual Meeting on Design and Reliability of Solders and Solder Interconnections, Orlando, FL, USA, pp. 377-384, February 9-13, 1997.
7. J.K. Kivilahti, “The Chemical Modeling of Electronic Materials and Interconnections”, Journal of the Minerals, Metals and Materials Society, Vol.54, No.12, pp. 52-57, 2002.
8. P. Vianco, P. Hopkins, K. Erickson, D.R. Frear, R. Davidson, Design and reliability of solders and solder interconnections, in: R.K. Mahidhara, D.R. Frear, S.M. Sastry, K. Murty, P. Liaw, W. Winterbottom (Eds.), The Minerals, Metals and Materials Society, TMS/AIME, Warredale, USA, 1997.
9. 黃頌閔,「不同迴銲條件之Sn-Ag-Cu無鉛錫球接合推剪組抗之韋伯分析」,國立成功大學材料科學及工程學系,碩士論文,民國九十五年。
10. Peng Sun, Cristina Anderson, Johan Liu, Dag R. Andersson, Per-Erik Tegehall, Dongkai Shangguan,“Evolution of Intermetallic Compounds in PBGA Sn-Ag-Cu Solder Joints during Thermal Cycling Testing”, 2006 7th International Conference on Electronics Packaging Technology, 2006.
11. 張淑如,「鉛對人體的危害」,勞工安全衛生簡訊,第12期,17-18頁,民國八十四年。
12. 賴玄金,「從IPC Work‘99會議中看無鉛銲錫電子構裝之應用現況與發展趨勢」,工業材料,第159期,99-107頁,民國八十九年。
13. P.T. Vianco and D.R. Frear,“Issues in the replacement of lead-bearing”, Journal of the Minerals, Metals and Materials Society, Vol. 45, No.7, pp. 14-19, 1993.
14. S. Jin, “Developing Lead-Free Solders: A challenge and opportunity”, Journal of the Minerals, Metals and Materials Society, Vol.45, No.7, pp. 13, 1993.
15. Ed. T. Lyman, H.E. Boyer and W.J. Carnes,“Maters Handbook Vol.8 Metallography, Stuctures and Phase Diagrams”, ASM, Metals Park, Ohio, USA, pp. 256.
16. L. Ye, Z. Lai, L. Liu, and A. Tholen,“Recent Achievement in Microstructure Investigation of Sn-0.5Cu-3.4Ag Lead-Free Alloy by Adding Boron”, International Symposium on Advanced Packaging Materials, pp. 262-267, 1999.
17. M. N. Islam, Y.C. Chan, M.J. Rizvi, and W. Jillek, “Investigation of interfacial reactions of Sn-Zn based and Sn-Ag-Cu lead-free solder alloys as replacement for Sn-Pb solder”, Journal of Alloys and Compounds 400, pp. 136-144, 2005.
18. Ag-Cu-Sn system, calculated phase diagrams, National Institute of Standards and Technology.
http://www.metallurgy.nist.gov/phase/solder/agcusn-ll.jpg
19. H. H. Manko,“Solders and Soldering”, 2nd ed., McGraw-Hill, New York, Chapter 1, 1979.
20. Roming, A. D., Jr., Chang, Y. A., Stephens, J. J., Frear, D. R., Marcotte, V. and Lea, C., “Physical metallurgy of solder-substrate reactions”in Frear, D.R., Jones, W. B., and Kin sman, K. R., eds., Solder Mechanics: A state of the Art Assessment, The Minerals, Metals, and Materials Society, Publishers, Warrendale, PA 15086, Chapter 2, 1991.
21. T.-C. Chiu, K. Zeng, R. Stierman, D. Edwards, and K. Ano, “Effect of thermal aging on board level drop reliability for Pb-free BGA packages”, in: Proceedings of 54th electronic components and technology conference, Las Vegas, NV, pp. 1256-1262, 2004.
22. R.J. Fields, S.R. Low and G.K. Lucey, “Physical and Mechanical Properties of Intermetallic Compounds Commonly Found in Solder Joints”, in The Metal Science of Joining, Cieslak, M.J., Perepezko, J.H., Kang., and M.E. Glicksman, eds., 1991, The Minerals, Metals, and Materials Society, Warrendale, Pennsylvania 15086, pp. 165-174, October 1991.
23. H. P. R. Frederikse, R.J. Fields and A. Feldman, “Thermal and electrical properties of copper-tin and nickel-tin intermetallics”, Journal of Applied Physics, Vol.72, No.7, pp. 2879-2882, 1991.
24. W. Bader, “Dissolution of Au, Ag, Pd, Pt, Cu and Ni in a molten tin-lead solder”, Welding Journal, Vol.48, No.12, pp. 551-557, 1969.
25. W. G. Bader, “Dissolution and formation of intermetallics in the soldering process”, in: Proceedings of the conference on Physical Metallurgy, Metal Joining, St. Louis, MO, Oct. 16–17, TMS/AIME, Warredale, USA, 1980.
26. K. Zeng and K. N. Tu, “Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology”, Materials Science and Engineering R, Vol. 38, No. 2, pp. 55-105, 2002.
27. 李芳儀,「銅含量對Sn-Ag-Cu 無鉛銲錫震動破壞特性之效應」,國立成功大學材料科學與工程學系碩士論文,民國九十二年。
28. C.M. Chung, T.S. Lui and L.H. Chen, “Effect of aluminum addition on tensile properties of naturally aging Sn-Zn eutectic solder”, Journal of Material Science, Vol.37, pp. 191-195, 2002.
29. M. McCormack, S. Jin, H.S. Chen and D.A. Machusak, “New lead-free Sn-Zn-In solder alloys”, Journal of Electronic Materials, Vol.123, pp. 687-690, 1994.
30. Masazumi Amagai, “A study of nanoparticles in Sn–Ag based lead free solders”, Microelectronics Reliability, Vol.48, pp. 1-16, 2008.
31. Grundbegriffe zum VDI-Handbuch Technische Zuverlssigkeit. VDI-Richtlinie 4001, Bltatt 2.
32. Rosemann H Zuverlssigkeit und Verfgbarkeit technischer Anlagen und Gerate. Springer-Verlag, Berlin, Heidelberg, New York, 1981.
33. Birolini A Qualitat und Zuverlssigkeit technischer Systeme, Springer-Verlag, Berlin, 1985.
34. B. Faucher and W. R. Tyson, “On the Determination of Weibull Parameters”, Journal of Material Science, Vol.7, pp. 1199-1203, 1998.
35. S. H. Dai, and M. O.Wang, “Reliability Analysis in Engineering Applications”, Van Nostrand Reinhold, pp. 353-358, 1992.
36. C633-01,“Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings”, ASTM, 2001.
37. K.S. Kim, S.H. Huh, K. Suganuma, “Effects of intermetallic compounds on properties of Sn–Ag–Cu lead-free soldered joints”, Journal of alloys and Compounds 352, pp. 226-236, 2003.
38. Dezhi Li, Changqing Liu, Paul P. Conway, “Characteristics of Intermetallics and micromechanical properties during thermal ageing of Sn-Ag-Cu flip-chip solder interconnects ”, Material Science and Engineering A, Vol.391, pp. 95-103, 2005.
39. Ahmed Sharif, Y. C. Chan, “Effect of indium addition in Sn-rich solder on the dissolution of Cu metallization”, Journal of Alloy and Compounds, Vol.390, pp.67-73, 2005.