| 研究生: |
陳勇全 Chen, Yung-chuan |
|---|---|
| 論文名稱: |
套管水泥之熱傳導與破壞力學性質之研究 The Study of the Properties of Heat Conduction and Fracture Mechanics in the Casing Cement |
| 指導教授: |
王建力
Wang, Chein-Lee |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 地下儲氣工程 、破裂韌度 、套管水泥 、ANSYS 、熱傳導 |
| 外文關鍵詞: | Casing cement, Thermal Conduction, ANSYS, Underground gas storage engineering, Fracture Toughness |
| 相關次數: | 點閱:92 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了解儲氣田氣井套管水泥熱傳導及破裂韌度的相關性質,本研究以巴西圓盤試體,進行熱傳導試驗及第一型破裂韌度試驗,以探討不同溫度養護環境對套管水泥性質造成的影響,並將熱傳導係數及破裂韌度與套管水泥的力學參數比較相關性,以ANSYS數值分析軟體探討材料之破裂韌度公式解與數值解之差異。試驗變數包括不同養護溫度與不同配比套管水泥:常溫養護(26℃)、高溫養護(60℃);四種水泥材料,波特蘭一般水泥及三種不同配比套管水泥。
研究結果顯示:
1.高溫養護能夠增加套管水泥之抗張強度。
2.經高溫養護後,套管水泥破裂韌度值有降低的情況發生。
3.經高溫養護後,套管水泥熱傳導係數皆有降低的情況發生。
4.不同的溫度養護對於為微米水泥材料性質並不會有太大的影響,其抗張強度、破裂韌度、柏松比、楊氏模數等變化皆甚微,由此可知微米水泥材料性質相當穩定。
5. G級矽砂水泥、G級水泥各方面性能如抗張強度、破裂韌度、熱傳導係數皆有不錯的表現,為油氣井套管工程較佳之選擇,微米水泥雖各方面性能不如G級矽砂、G級水泥,但對於溫度變化之穩定性有很好的表現,對於高深度油氣井套管工程是不錯的選擇。
The aim of this study is to investigate the thermal and mechanical properties of various casing cements in gas well reservoir. Four types of cements including Portland, API G without silica, API G with silica, and micro cements are investigated in this study. Two curing conditions including room temperature (26oC) and high temperature (60oC) are carried out. This study uses a comparative plate method to measure the thermal conductivities of a Brazilian disc sample. The same sample is then tested by the Brazilian test to obtain the level I fracture toughness and other mechanical properties including the compressive strength, tensile strength, Young’s modulus, and Poisson ratio. In order to obtain the fracture toughness, a finite element analysis package, ANSYS is used.
Experimental results indicate that
1. The tensile strength increases for samples cured at high temperature.
2. The fracture toughness decreases for samples cured at high temperature.
3. The thermal conductivity decreases for samples cured at high temperature.
4.The thermal and mechanical properties change were not too much of micro cement between two curing condition, but API G without silica cement and API G with silica cement on the contrary.
5.The properties of API G with silica cement and API G without silica cement are better than those of micro cement. But micro cement is more thermally stable than API G cement.
1.王德宗,"地熱及深井用水泥在高溫下硬化之特性研究",國立成功大學礦冶及材料科學研究所碩士論文,1985。
2.王以雄等人譯(Sherwin, K.著),"熱力學概論",高立圖書有限公司,2001。
3.林政億,"以破壞力學分析水力破裂法之研究",國立成功大學資源工程研究所碩士論文,2006。
4.林國安等人,"石油探採:第四冊",中國石油股份有限公司,1993。
5.林炳炎,"飛灰、矽灰、高爐爐石用在混凝土中",三民書局,1993。
6.吳柏裕,"天然氣儲氣窖注氣功能及效益",台灣天然氣供需輸儲現況及展望研討會,第63-83頁,1999。
7.邱亮人,"飛灰對新拌混凝土熱學性質之影響",國立台灣科技大學營建工程系碩士論文,2000。
8.柯建仲,"異向性大理岩之破壞力學性質分析",國立成功大學資源工程研究所碩士論文,2000。
9.翁豐源,"耐高溫水泥乳之研究,石油鑽採工程(中國石油學會出版),第十八期,第20-47頁,1977。
10.涂家輝,"異向性雙合成材料之破壞力學性質分析",國立成功大學資源工程研究所碩士論文,2004。
11.陳金木、邱金水等人,"鑽採工程材料手冊:第八篇套管下水泥工程",中國石油股份有限公司台灣油礦探勘總處,1987。
12.陳富子等人譯(Holman, J. P.著),"熱傳遞學",曉園出版社,1989。
13.張政豐,"高性能混凝土熱傳導性質之研究",國立臺灣工業技術學院碩士論文,1995。
14.莫海龍,"高性能混凝土熱膨脹性質之研究",國立台灣科技大學營建工程系碩士論文,1995。
15.張元曦,"儲氣田氣井套管水泥之應力分析",國立成功大學資源工程學系碩士論文,2005。
16.黃奇元,"高溫高壓蒸氣養護混凝土強度衰退原因探討與改善對策",國立中興大學土木工程所碩士論文,1995。
17.葉時青,”岩石邊坡穩定之斷裂力學分析”,國立成功大學資源工程研究所碩士論文,2001。
18.溫凱翎,”混凝土添加飛灰及爐石在高溫環境下之硬固性質及熱傳行為”,國立台灣科技大學營建工程系碩士論文,2006。
19.詹益謙等人,”鑽井工程”,中國石油學會技術委員會/探採組/技術委員會/探採組,1973。
20.楊珮琳,”不同養護條件下添加飛灰或爐灰對水泥質材料性質影響之研究”,國立臺灣海洋大學河海工程學系碩士論文,2005。
21.鄭永傑,”卜作嵐材料及細粒料對水泥漿體熱傳導係數之影響”,國立台灣科技大學營建工程系碩士論文,2002。
22.羅增文,”玻纖、輸氣劑、輕質骨材對高性能混凝土熱傳導性質之影響”,國立臺灣科技大學營建工程系碩士論文,1998。
23.ASTM D5334,“Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure,” Annual Book of ASTM Standards,Vol.0408U.S.A., pp.l394-1398,1993.
24.Atkinson, C., Smelser, R. E. and Sanchez, J., “Combined mode fracture via the cracked Brazilian disk test,” Int. J. Fracture, Vol. 18, No. 4, PP.279-291, 1982.
25.Awaji, H. and Sato, S., “Combined mode fracture toughness measurement by the disk test,” J. Eng. Mater. Tech.. Trans. ASME, Vol. 100, No. 4, pp.175-182, 1978.
26.Blackwell, J. H., “The Axial-Flow Error in the Thermal Conductivity Probe,” Canadian Journal of Physics, Vol.34, pp.412-417,1956.
27.Fowell, R. J. and Xu, C., “The Use of the Cracked Brazilian Disc Geometry for Rock Fracture Investigations,” Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 31. No. 6. pp. 571-579, 1994.
28.Griffith, A. A., “The phenomenon of rupture and flow in solids,” Phil. Trans.R. Soc. London, Series A, 221, pp163~198,1920.
29.Guo, H., Aziz, N. I. and Schmidt, L. C., “Rock fracture-toughness determination by the Brazilian test,” Engineering Geology., Vol. 33, pp. 177-188, 1993.
30.Hondros, G., “The evaluation of Poisson’s ratio and the modulus of materials of a low tensile resistance by the Brazilian (Indirect tensile) test with particular reference to concrete,” Aust. J. App. Sci., Vol. 10, pp. 428-434, 1959.
31.Irwin, G.R., “Fracture dynamics, Fracture of Metals,” American Society of Metals, pp147~166, 1948.
32.Irwin, G. R., “Analysis of stresses and strains near the end of a crack,” J.Appl. Mech., 24, pp.361, 1957.
33.Irwin, G. R. and Kies, J. E., “Critical energy rate analysis of fracture strength,” Welding Journal, 33, pp.193~198, 1952.
34.Libatskii, L. L. and Kovchik, S. E., “Fracture of discs containing cracks,” Soviet Materials Science, Vol. 3, No. 4, pp. 334-339, 1967.
35.Rudi Rubiandini, R. S., “New Additive for Improving Shearbond Strength in High Temperature and Pressure Cement,” SPE 62750, Sep. 2000.
36.Short, A. and Kinniburgh, W., “Lightweight Concrete”, Formerly Building Research Establishment,” Garston, Watford, U.K.,1976.
37.Skalny, J. and Ivan, O., ”Pore Structure of Calcium Silicate Hydrates,” Cement and Concrete Research, Vol.2, No.4, July, pp.387~400, 1972.
38.Westergaard, H. M., “Bearing pressures and cracks,” J. Appl. Mech., 61, A49-53. 1939.
39.Whittaker, B. N., Singh, R. N. And Sun, G., Rock Fracture Mechanics: Principles, Design and Applications, Elsevier, New York, 1992.