| 研究生: |
張詩敏 Chang, Shih-Min |
|---|---|
| 論文名稱: |
新穎觀點論述環帶球晶內部晶板 Novel Approaches to Dissertate Interior Lamellae in Ring-banded Spherulites |
| 指導教授: |
吳逸謨
Woo, Ea-Mor |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 聚乳酸 、聚對位乙烯基酚 、立體錯合物 、聚對苯二甲酸十二二酯 、環帶狀球晶 、塊材 |
| 外文關鍵詞: | polyester, stereocomplex, ring-banded spherulites, lamellae, poly(dodecamethylene terephthalate) |
| 相關次數: | 點閱:105 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用微分掃描熱卡計(differential scanning calorimeter, DSC)、偏光顯微鏡(polarized optical microscopy, POM)、傅立葉轉換紅外光譜儀(Fourier-transform infrared spectroscopy, FT-IR)、廣角X光繞射儀(wide-angle X-ray diffraction, WAXD)、掃描式電子顯微鏡(scanning electron microscopy, SEM)以及原子力顯微鏡(atomic force microscopy, AFM) 分別探討:低分子量左式聚乳酸 [low-molecular-weight poly(L-lactic acid), LMw-PLLA]/右式聚乳酸 [ploy(D-lactic acid), PDLA]/聚對位乙烯基酚poly(4-vinyl phenol), PVPh] 高分子摻合體系統的球晶形貌、晶板微結構、成長機制;以及長碳鏈之聚對苯二甲酸十二二酯 (poly(dodecamethylene terephthalate, P12T) 的球晶形貌、晶態行為與晶板形貌結構分析。
LMw-PLLA/PDLA/PVPh 摻合系統部分,先將之PLLA與PDLA同比例摻合形成立體錯合物 (stereocomplex) 再添加不同比例的非晶形高分子 PVPh 形成三成份摻合體 (sc-PLA/PVPh)。透過調整組成比例、結晶溫度,於 sc-PLA/PVPh摻合比例 70/30,及結晶溫度區間Tc = 165~172 oC內,首次發現有結合 ring/ringless 雙重形貌的球晶生成,球晶特徵為在中心生成環帶,球晶達到一定程度的直徑後,改以無環帶的狀態繼續生長到完全結晶,這種特殊的現象需調整相關條件參數 (熔融時間、結晶溫度、樣品膜厚) 才能生成,造成這種雙重形貌的球晶,可能原因為樣品在消除熱歷史時,並未完全消去晶核,加上非晶形高分子 PVPh 添加比例高達 30 wt%,在熔融時間較低的樣品上分散不均勻,造成球晶在成長過程中受到阻礙,進而形成結合 ring/ringless 雙重形貌的球晶。
P12T 的系統中,在POM下可以觀察到兩種類型環帶球晶,一為生成結晶溫度較低 (Tc = RT~99 oC) 的雙重環帶球晶 (double ring-banded),能夠同時在薄膜 (厚度1~5 μm) 與塊材 (厚度10~30 μm) 樣品中觀察到。P12T 在薄膜狀態下,利用 AFM 掃描樣品,發現隨著熱處理時間改變,球晶表面晶板從圓球形晶板轉變為皺褶狀與平坦的晶板。研究中不只對環帶球晶的表面進行觀察亦將P12T的塊材樣品進行結晶及斷裂,分析其三維尺度下環帶球晶內部的晶板。另一種生成結晶溫度較高 (Tc = 100~110 oC) 的同心暗線環帶球晶 (concentric ring-banded) ,此種球晶只能在薄膜狀態下 (厚度500nm~3μm) 生成。透過原子力顯微鏡觀察,球晶表面全由 flat-on 晶板組成,其生成原因為晶板於成長過程中,由非線性的擴散造成crystal-rich band及crystal-poor band 規律且交替性的出現,而生成此類環帶的構造。
This study has been focused on the ring-banded spherulite morphology and behavior of sc-PLA/PVPh blends system, and synthesized poly(dodecamethylene terephthalate) (P12T) in either thin-film or bulk forms. These crystalline morphologies and behaviors were characterized by differential scanning calorimeter (DSC), polarized optical microscopy (POM), Fourier-transform infrared spectroscopy (FT-IR), wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and atomic force microscopy (AFM).
Under POM, the sc-PLA/PVPh blend systems display negative ringless spherulites. However, by controlling the composition, crystallization temperature (Tc), and melting time (Δtmax) of the blend, a special morphology of mixed ring-banded (at the center) and ringless (at the following growth) spherulite is observed under the OM. The sc-PLA/PVPh 70/30 blend melted at 240 oC for 1 minute and crystallized at Tc = 165-172 oC was found to show the most obvious ring/ringless spherulitic pattern. The reason is that the higher content of PVPh with shorter melting time might hinder the growth of sc-PLA crystal, inducing the formation of ring-banded morphology. By melting the crystallized sample, it was found that ring-banded region of the spherulite consists of stable crystal compare to the outer ringless region.
P12T shows two types of ring-banded morphology according to Tc. At lower Tc (RT-99 oC) double ring-banded is observed, whereas concentric ring-banded is found at higher Tc (100-110 oC). For lower Tc samples, in order to get larger spherulite, longer melting time was applied to the sample. The WAXD results show that the crystal form of P12T does not change by Tc and tmax. However, the DSC and AFM results show that the longer tmax will induce the formation of the more stable crystal which has wrinkled lamellae pattern instead of the less stable spherical lamellae. The correlation between top and fracture surface of the bulk sample has been observed by SEM to show the lamellar arrangement in three-dimension (3-D). At the higher Tc, the concentric ring-banded spherulite consists of flat-on lamellae which are only observed in thin film. The characteristics of these ring-banded morphologies have been exposed and investigated in this study.
1. Browne, G.H. and D.M. Kingston, Early diagenetic spherulitic siderites from Pennsylvanian palaeosols in the Boss Point Formation, Maritime Canada. Sedimentology, 1993. 40(3): p. 467-474.
2. Magill, J.H. and D.J. Plazek, Physical Properties of Aromatic Hydrocarbons. II. Solidification Behavior of 1,3,5-Tri-alpha-Naphthylbenzene. The Journal of Chemical Physics, 1967. 46(10): p. 3757-3769.
3. Lotz, B. and S.Z.D. Cheng, A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer, 2005. 46(3): p. 577-610.
4. Toda, A., et al., Three-dimensional shape of polyethylene single crystals grown from dilute solutions and from the melt. Polymer, 2005. 46(20): p. 8708-8716.
5. Schultz, J.M. and D.R. Kinloch, Transverse screw dislocations: A source of twist in crystalline polymer ribbons. Polymer, 1969. 10(0): p. 271-278.
6. Eshelby, J.D., W.T. Read, and W. Shockley, Anisotropic elasticity with applications to dislocation theory. Acta Metallurgica, 1953. 1(3): p. 251-259.
7. Toda, A., et al., Branching and Higher Order Structure in Banded Polyethylene Spherulites. Macromolecules, 2008. 41(7): p. 2484-2493.
8. Toda, A., I. Kojima, and M. Hikosaka, Melting Kinetics of Polymer Crystals with an Entropic Barrier. Macromolecules, 2007. 41(1): p. 120-127.
9. Schultz, J.M., Self-induced field model for crystal twisting in spherulites. Polymer, 2003. 44(2): p. 433-441.
10. Ye, H.-M., et al., Surface Stress Effects on the Bending Direction and Twisting Chirality of Lamellar Crystals of Chiral Polymer. Macromolecules, 2010. 43(13): p. 5762-5770.
11. Punin, Y.O. and A. Shtukenberg, Autodeformation defects in crystals, 2008, St. Petersburg University Press, St. Petersburg.
12. Shtukenberg, A.G., J. Freudenthal, and B. Kahr, Reversible Twisting during Helical Hippuric Acid Crystal Growth. Journal of the American Chemical Society, 2010. 132(27): p. 9341-9349.
13. Xu, J., et al., Direct AFM Observation of Crystal Twisting and Organization in Banded Spherulites of Chiral Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules, 2004. 37(11): p. 4118-4123.
14. Schultz, J.M., Unusual “Twisting” Morphology in Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Spherulites. Macromolecules, 2013.
15. Ye, H.-M., et al., Left- or Right-Handed Lamellar Twists in Poly[(R)-3-hydroxyvalerate] Banded Spherulite: Dependence on Growth Axis. Macromolecules, 2008. 42(3): p. 694-701.
16. Saracovan, I., et al., Banding in Spherulites of Polymers Having Uncompensated Main-Chain Chirality. Macromolecules, 1999. 32(26): p. 8918-8922.
17. Nurkhamidah, S. and E.M. Woo, Unconventional Non-birefringent or Birefringent Concentric Ring-Banded Spherulites in Poly(L-lactic acid) Thin Films. Macromolecular Chemistry and Physics, 2013. 214(6): p. 673-680.
18. Wang, Z., et al., Rhythmic Growth-Induced Ring-Banded Spherulites with Radial Periodic Variation of Thicknesses Grown from Poly(ε-caprolactone) Solution with Constant Concentration. Macromolecules, 2008. 41(20): p. 7584-7595.
19. Wang, Z., et al., Ring-banded spherulite surface structure of poly(ε-caprolactone) in its miscible mixtures with poly(styrene-co-acrylonitrile). Journal of Polymer Science Part B: Polymer Physics, 1999. 37(18): p. 2682-2691.
20. Duan, Y., et al., In situ AFM study of the growth of banded hedritic structures in thin films of isotactic polystyrene. Polymer, 2005. 46(21): p. 9015-9021.
21. Li, Y., et al., Rhythmic Growth Combined with Lamellar Twisting Induces Poly(ethylene adipate) Nested Ring-Banded Structures. ACS Macro Letters, 2011. 1(1): p. 154-158.
22. Wang, Y., et al., Concentric-Ringed Structures in Polymer Thin Films. Langmuir, 2006. 22(17): p. 7384-7390.
23. Ortoleva, P.J., Geochemical self-organization. 1994: Oxford University Press, USA.
24. Kyu, T., et al., Rhythmic Growth of Target and Spiral Spherulites of Crystalline Polymer Blends. Physical Review Letters, 1999. 83(14): p. 2749-2752.
25. Chen, Y.-F. and E.M. Woo, Annular Multi-Shelled Spherulites in Interiors of Bulk-Form Poly(nonamethylene terephthalate). Macromolecular Rapid Communications, 2009. 30(22): p. 1911-1916.
26. Woo, E.M., S. Nurkhamidah, and Y.-F. Chen, Surface and interior views on origins of two types of banded spherulites in poly (nonamethylene terephthalate). Physical Chemistry Chemical Physics, 2011. 13(39): p. 17841-17851.
27. Woo, E.M., L.-Y. Wang, and S. Nurkhamidah, Crystal Lamellae of Mutually Perpendicular Orientations by Dissecting onto Interiors of Poly(ethylene adipate) Spherulites Crystallized in Bulk Form. Macromolecules, 2012. 45(3): p. 1375-1383.
28. Ikada, Y., et al., Stereocomplex formation between enantiomeric poly(lactides). Macromolecules, 1987. 20(4): p. 904-906.
29. Miyata, T. and T. Masuko, Crystallization behaviour of poly (L-lactide). Polymer, 1998. 39(22): p. 5515-5521.
30. Okihara, T., et al., Crystal structure of stereocomplex of poly (L-lactide) and poly (D-lactide). Journal of Macromolecular Science, Part B: Physics, 1991. 30(1-2): p. 119-140.
31. Cartier, L., T. Okihara, and B. Lotz, Triangular polymer single crystals: Stereocomplexes, twins, and frustrated structures. Macromolecules, 1997. 30(20): p. 6313-6322.
32. Tsuji, H., et al., Stereocomplex formation between enantiomeric poly(lactic acid)s. 2. Stereocomplex formation in concentrated solutions. Macromolecules, 1991. 24(10): p. 2719-2724.
33. Tsuji, H., S.H. Hyon, and Y. Ikada, Stereocomplex formation between enantiomeric poly(lactic acids). 5. Calorimetric and morphological studies on the stereocomplex formed in acetonitrile solution. Macromolecules, 1992. 25(11): p. 2940-2946.
34. Brochu, S., et al., Stereocomplexation and Morphology of Polylactides. Macromolecules, 1995. 28(15): p. 5230-5239.
35. Katime, I.A., J.R. Quintana, and C. Strazielle, Relationship between physical parameters of the solvent and its influence in stereocomplex formation. Die Makromolekulare Chemie, 1986. 187(6): p. 1441-1455.
36. Tsuji, H. and Y. Ikada, Crystallization from the melt of poly(lactide)s with different optical purities and their blends. Macromolecular Chemistry and Physics, 1996. 197(10): p. 3483-3499.
37. Yen, K.C., E.M. Woo, and K. Tashiro, Six types of spherulite morphologies with polymorphic crystals in poly(heptamethylene terephthalate). Polymer, 2010. 51(23): p. 5592-5603.
38. Kawahara, Y., et al., Stacked-lamellar structure of electrospun poly(heptamethylene terephthalate) nanofibers. Journal of Materials Science, 2009. 44(8): p. 2137-2142.
39. Chen, Y.-F., E.M. Woo, and S.-H. Li, Dual Types of Spherulites in Poly(octamethylene terephthalate) Confined in Thin-Film Growth. Langmuir, 2008. 24(20): p. 11880-11888.
40. Jeong, Y.G., S.C. Lee, and K. Shin, Crystal structure of poly(octamethylene terephthalate) determined by X-ray fiber diffraction and molecular modeling. Journal of Polymer Science Part B: Polymer Physics, 2009. 47(3): p. 276-283.
41. Woo, E.M. and Y.-F. Chen, Single- and double-ring spherulites in poly(nonamethylene terephthalate). Polymer, 2009. 50(19): p. 4706-4717.
42. Woo, E.M. and S. Nurkhamidah, Surface Nanopatterns of Two Types of Banded Spherulites in Poly(nonamethylene terephthalate) Thin Films. Journal of Physical Chemistry B, 2012. 116(16): p. 5071-5079.
43. Papageorgiou, G.Z., D.N. Bikiaris, and C.G. Panayiotou, Novel miscible poly(ethylene sebacate)/poly(4-vinyl phenol) blends: Miscibility, melting behavior and crystallization study. Polymer, 2011. 52(20): p. 4553-4561.
44. Mikitaev, A.K., M.A. Mikitaev, and T. Borukaev, Poly (butylene Terephthalate): Synthesis and Properties. Vol. 29. 2006: CRC PressI Llc.
45. Hall, I., M. Pass, and N. Rammo, The structure and properties of oriented fibers of poly (pentamethylene terephthalate). I. Synthesis of polymer and preparation of two different crystalline phases. Journal of Polymer Science: Polymer Physics Edition, 1978. 16(8): p. 1409-1418.
46. Hall, I. and N. Rammo, The structure and properties of oriented fibers of poly (pentamethylene terephthalate). II. Structural analysis of two different crystalline phases by x‐ray crystallography. Journal of Polymer Science: Polymer Physics Edition, 1978. 16(12): p. 2189-2214.
47. Hall, I.H. and B.A. Ibrahim, The structure and properties of poly(hexamethylene terephthalate): 1. The preparation, morphology and unit cells of three allomorphs. Polymer, 1982. 23(6): p. 805-816.
48. Palmer, A., et al., Poly(hexamethylene terephthalate)—I. Interpretation of its diffraction patterns. European Polymer Journal, 1984. 20(8): p. 783-789.
49. Joly, A.M., et al., Contribution à l'étude de la structure des polytéréphtalates de quelques polyméthylèneglycols. Die Makromolekulare Chemie, 1975. 176(2): p. 479-494.
50. Kawahara, Y., et al., Stacked-lamellar structure of electrospun poly (heptamethylene terephthalate) nanofibers. Journal of materials science, 2009. 44(8): p. 2137-2142.
51. Hall, I. and M. Pass, Chain conformation of poly (tetramethylene terephthalate) and its change with strain. Polymer, 1976. 17(9): p. 807-816.
52. Jeong, Y.G., S.C. Lee, and K. Shin, Crystal structure of poly (octamethylene terephthalate) determined by X‐ray fiber diffraction and molecular modeling. Journal of Polymer Science Part B: Polymer Physics, 2009. 47(3): p. 276-283.
53. 李淑嫻, 生物可分解性聚酯與聚甲基丙烯酸甲酯摻合體之相行為與微異態. 國立成功大學化學工程學系博士論文, 2009.
54. nurkhamidah, S., Crystalline Morphology and Nano-scale Lamellar Assembly in Chiral Polylactides Interacting with Crystalline or Amorphous Polymers. PhD Dissertation, National Cheng Kung University 2012.
55. Li, S.-H. and E.M. Woo, Kinetic Analysis on Effect of Poly(4-vinyl phenol) on Complex-Forming Blends of Poly(L-lactide) and Poly(D-lactide). Polymer Journal, 2009. 41(5): p. 374-382.
56. Fraschini, C., et al., Polymorphism and cross-nucleation in poly(1,3-dioxolan). Polymer, 2012. 53(1): p. 188-195.
57. Li, Y., et al., Band-to-Nonband Transition into Unique Poly(ε-caprolactone) Crystals by Modulating the Interplay of Diffusion and Growth. ACS Macro Letters, 2012. 1(6): p. 718-722.
58. Duan, Y., et al., Depletion-Induced Nonbirefringent Banding in Thin Isotactic Polystyrene Thin Films. Macromolecules, 2004. 37(24): p. 9283-9286.
校內:2018-02-13公開