| 研究生: |
曹雲 Tsao, Yun |
|---|---|
| 論文名稱: |
石墨烯在氧化矽基板之鋁/鉑塗層上其拉曼振動譜及同步輻射光致光電子能譜學研究 The Doping Level of Graphene on Metal-coated SiOx Substrate: Its Raman Spectroscopy and Synchrotron Radiation Photoelectron Spectroscopy Study |
| 指導教授: |
吳忠霖
Wu, Chung-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 石墨烯 、柯恩異常 、摻雜濃度 、微拉曼 、同步輻射光電子能譜 、電子聲子耦合 |
| 外文關鍵詞: | Graphene, Kohn Anomalies, doping level, μ-Raman spectrum, SR-PES, EPC |
| 相關次數: | 點閱:101 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究不同層數的石墨烯在鉑和鋁金屬塗層上產生的載子摻雜濃度。透過光學計算得到具良好對比度的參數,利用微拉曼量測得到不同厚度石墨烯的G峰頻移和半高寬資訊,G峰的變化關聯到柯恩異常(Kohn Anomalies),經過非絕熱的波恩奧本海默近似(Nonadiabatic Born-Oppenheimer Approximation)分析後可以求得巨觀(~70 μm^2)下的摻雜濃度。另外,借重同步輻射光電子能譜以及掃描式光電子能譜顯微術能夠準確定位石墨烯碎片並取得微觀(~0.03 μm^2)下的碳殼層光電子能譜,分析碳1s殼層的能量偏移可獲知狄拉克點鄰近費米面的漲落和微觀摻雜濃度,造成費米面移動的原因來自於石墨烯與金屬功函數差異導致的電荷轉移。經實驗得到的電子聲子耦合EPC(Γ)與密度泛函理論(Density Functional Theory)預測的值相當吻合,與金屬塗層接觸也較電場致摻雜效應(Electric Field Effect)方便並能提供大量載子。
To develop novel graphene-based device, the carrier concentration of graphene has been studied widely recently. Through those researches, the doping level of graphene can be modulated by atom replacement, which may cause the 2-D structure damage or Electric Field Effect (EFE), which need to apply lots of extra electric filed. So far researches cannot find a simple way to tune the doping level of graphene. Owing to the differ¬ent work functions could induce charge transfer, we demonstrate Aluminum as well as Platinum-coated systems to support exfoliated graphene, and show that its doping level is captured in its Raman spectrum G peak stiffen. The G peak stiff¬en is explained as the vanishment of Kohn Anomalies (KAs) in reciprocal lattice points K and K'. Further, by Synchrotron Radiation Photoelectron Spectroscopy (SR-PES), we detect the C1s binding energy of different layers graphene on these two systems; afterwards, we get the experimental Electron Phonon Coupling (EPC) ~5.25 by combining the information from SR-PES and Raman spectrum. The agreement with the Density Functional Theory (DFT) value ~6.78 is excellent.
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva,and A. A. Firsov, Science 306, 666-669 (2004)
2 A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007)
3 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 438, 197 (2005)
4 Y. Zhang, J. W. Tan, H. L. Stormer, P. Kim, Nature 438, 201 (2005)
5 Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan, M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer and P. Kim, Phys. Rev. Lett. 96, 136806 (2006)
6 F. Guinea, A. H. Castro Neto and N. M. R. Peres, Phys. Rev. B 73, 245426 (2006)
7 F. Rana, IEEE Trans. Nanotech. 7, 91–99 (2008)
8 F. Schedin et al, Nature Mater. 6, 652–655 (2007)
9 Y.-W. Son, M. L. Cohen and S. G. Louie, Nature 444, 347–349 (2006)
10 B. Trauzettel, D. V. Bulaev, D. Loss and G. Burkard, Nature Phys. 3, 192–196 (2007)
11 T. Yokoyama, Phys. Rev. B 77, 073413 (2008)
12 V. I. Fal’ko, Nature Phys. 3, 151–152 (2007)
13 Simone Pisana , Michele Lazzeri, Cinzia Casiraghi, Kostya S. Novoselov, A. K. Geim, Andrea C. Ferrari and Francesco Mauri, Nature Mater. 6, 198201 (2007)
14 A. Das, S. Pisana, B. chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood, Nature Nanotech. 3, 201-215 (2008)
15 Jun Yan, Yuanbo Zhang, Philip Kim and Aron Pinczuk, Phys. Rev. Lett. 98, 166802 (2007)
16 Eduardo V. Castro, K. S. Novoselov, S. V. Morozov, N. M. R. Peres, J. M. B. Lopes dos Santos, Johan Nilsson, F. Guinea, A. K. Geim and A. H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007)
17 Young-Jun Yu, Yue Zhao, Sunmin Ryu, Louis E. Brus, Kwang S. Kim, and Philip Kim, Nano lett. 9, No. 10, 3430-3434 (2009)
18 G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink and P. J. Kelly, Phys. Rev. Lett 101, 026803 (2008)
19 樊曉峰, 郭哲來, Phys. Bimonthly 33-2 , 214-235 (2011)
20 X. Liang, Z. Fu and S. Y. Chou, Nano Lett. 7, 3840 (2007)
21 Konstantin V. Emtsev , Aaron Bostwick , Karsten Horn , Johannes Jobst , Gary L. Kellogg , Lothar Ley , Jessica L. McChesney , Taisuke Oht, Sergey. Reshanov , Jonas Röhrl , Eli Rotenberg , Andreas K. Schmid , Daniel Waldmann , Heiko B. Weber and Thomas Seyller, Nature Mater. 8, 203-207 (2009)
22 T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 951 (2006)
23 C. Berger, Z. M. Song, X. B. Li, X. S. Wu, N. Brown, C. Naud, D. Mayo,T. B. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A.de Heer, Science 312, 1191 (2006)
24 Peter Sutter, Nature Materials 8, 171-172 (2009)
25 Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen, and Shin-Shem Pei, Appl. Phys. Lett. 93, 113103 (2008)
26 A. Hayes and J. Chipman, Trans. Am. Inst. Min., Metall. Pet. Eng. 135, 85 (1939)
27 Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P. Chen, and Shin-Shem Pei, Appl. Phys. Lett. 93, 113103 (2008)
28 Jiamin Xue, Javier Sanchez-Yamagishi, Danny Bulmash, Philippe Jacquod, Aparna Deshpande, K. Watanabe, T. Taniguchi, Pablo Jarillo-Herrero and Brian J. LeRoy, Nature Mater. 10, 282-285 (2011)
29 Gianluca Giovannetti, Petr A. Khomyakov, Geert Brocks, Paul J. Kelly and Jeroen van den Brink, Phys. Rev. B 76, 073103 (2007)
30 J. Sławińska, I. Zasada and Z. Klusek, Phys. Rev B 81, 155433 (2010)
31 N. Levy, S. A. Burke, K. L. Meaker, M. Panlasigui, A. Zettl, F. Guinea, A. H. Cas-tro Neto, M. F. Crommie, Science 329, 544-547 (2010)
32 Fazel Yavari, Eduardo Castillo, Hemtej Gullapalli, Pulickel M. Ajayan, and Nikhil Koratkar, Appl. Phys. Lett. 100, 203120 (2012)
33 C. V. Raman, Indian J. Phys. 2, 387-398 (1928)
34 Skoog. Holler. And Nieman, Principles of Instrumental Analysis, 5th edition. Saunders Colledge Publishing
35 A. Einstein, Ann. Phys. 17, 132 (1905)
36 Zangwill’s book and references therein.
37 http://www.nsrrc.org.tw/chinese/index.aspx
38 汪建民, 材料分析(中國材料科學學會, 台灣, 1989)
39 P. Blake, E. W. Hill, A. H. Castro Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, Appl. Phys. Lett. 91, 063124 (2007)
40 Emil B. Song, Bob Lian, Guangyu Xu, Bo Yuan, Caifu Zeng, Amber Chen, Minsheng Wang, Sungmin Kim, Murong Lang, Yi Zhou and Kang L. Wang, Appl. Phys. Lett. 96, 081911 (2010)
41 Teo Guoquan, Wang Haomin, Wu Yihong, Guo Zaibing, Zhang Jun, Ni Zhenhua, Shen Zexiang, J. of Appl. Phys. 103, 124302 (2008)
42 L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Phys. Reports 473, 51–87 (2009)
43 W. Kohn, Phys. Rev. Lett. 2, 393 (1959)
44 S. Piscanec, M. Lazzeri, Francesco Mauri, A. C. Ferrari and J. Robertson, Phys. Rev. Lett. 93, 185503 (2004)
45 J. C. Tsang , M. Freitag , V. Perebeinos, J. Liu and Ph. Avouris, Nature Nanotech. 2 ,725-730 (2007)
46 Anindya Das, A. K. Sood, A. Govindaraj, A. Marco Saitta, Michele Lazzeri, Fran-cesco Mauri and C. N. R Rao, Phys. Rev. Lett. 99, 136803 (2007)
47 Khoi T. Nguyen, Anshu Gaur and Moonsub Shim, Phys. Rev. Lett. 98, 145504 (2007)
48 Michele Lazzeri and Francesco Mauri, Phys. Rev. Lett. 97, 266407 (2006)
49 Andrea C. Ferrari ,Solid State Communications 143, 47–57 (2007)
50 Jill Chastain, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer Corportion & Physical Electronics Division, Minnesota, 1992)