簡易檢索 / 詳目顯示

研究生: 林群堡
Lin, Chun-Pao
論文名稱: 熱處理對鈦-鉬合金機械性質的影響
Effect of thermomechanical treatment on mechanical properties of Ti-Mo alloys
指導教授: 陳瑾惠
Chern Lin, Jiin-Huey
朱建平
ju, Chien-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 125
中文關鍵詞: 鈦合金熱機處理
外文關鍵詞: titanium alloys, thermomechanical treatment
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 室溫滾壓的Ti-15%Mo-1%Bi合金,經過900℃固溶找到最好的固溶條件,接著在氬氣的氣氛之下,選擇350℃到600℃等不同的時效溫度作900℃的時效處理,測試其相組成和拉伸性質。實驗結果以500℃時效24小時的機械性質為最佳,因此以該條件作疲勞的測試。
    接著以一次時效中,ω相析出最多的條件再做第二次時效,析出更緻密的α相,以期提高其疲勞性質,因此取400℃時效24小時之後的試片,做500℃和600℃的二次時效,測試其拉伸性質和疲勞測試。

    The alloy Ti-15%Mo-1%Bi was first rolled at room temperature. We figured out that the 900℃, 5 minutes was the best parameter for solution treatment. After that, we chose different temperature for aging treatment under argon atmosphere. The test item included phase composition and tensile properties. The best experiment result was aging at 500℃ for 24 hours, hence we chose the parameter for fatigue experiment.
    Second part of my experiment was double aging treatment. The precipitation of ω phase can induce α phase precipitate. 400℃ aged 24 hours was the large ω precipitate parameter at first stage. We chose the parameter for the following experiment which was double aging at 500℃ and 600℃. Finally, we also test the tensile and fatigue properties.

    總目錄 中文摘要 ……………………………………………………………… Ⅰ Abstract ……………………………………………………………… Ⅱ 致謝 …………………………………………………………………… Ⅲ 總目錄 ……………………………………………………………… Ⅳ 圖目錄 ……………………………………………………………… Ⅸ 表目錄 ……………………………………………………………… XVII 第一章 前言 …………………………………………………………… 1 1-1 研究背景 …………………………………………………… 1 1-2 生醫材料蓋論 ……………………………………………………… 1 1-2-1 金屬生醫材料 ………………………………………………… 3 1-2-2 高分子生醫材料 ………………………………………………… 5 1-2-3 陶瓷生醫材料 ………………………………………………… 7 1-2-4 複合生醫材料 ………………………………………………… 8 1-3 研究目的 ……………………………………………………… 9 第二章 文獻回顧 ………………………………………………… 10 2-1 純鈦及其性質 ………………………………………………… 10 2-1-1 鈦的發展史 …………………………………………………… 10 2-1-2 純鈦的基本性質 ……………………………………………… 12 2-2 鈦合金分類及其性質 ………………………………………… 13 2-2-1 α型鈦合金 …………………………………………………… 15 2-2-2 near α型鈦合金 …………………………………………… 16 2-2-3 α+β型鈦合金 ……………………………………………… 16 2-2-4 β型鈦合金 …………………………………………………… 17 2-3 應力遮蔽效應 ………………………………………………… 18 2-4 生醫用鈦合金 ………………………………………………… 19 2-4-1 人工關節 ……………………………………………………… 20 2-4-2 牙科植入材 …………………………………………………… 21 2-4-3 形狀記憶合金 ………………………………………………… 22 2-5 表面處理 ……………………………………………………… 25 第三章 理論基礎 ………………………………………………… 26 3-1 熱機處理 ……………………………………………………… 26 3-1-1 加工硬化 ……………………………………………………… 27 3-1-2 固溶處理 …………………………………………………… 28 3-1-3 時效處理 …………………………………………………… 29 3-1-3-1 析出硬化的條件 …………………………………………… 30 3-1-3-2 析出硬化之強化機構 ……………………………………… 32 3-1-3-3 無析出帶 …………………………………………………… 35 3-1-3-4 ω相的形成機制 …………………………………………… 38 3-1-3-5 α相的析出 ………………………………………………… 41 3-1-3-6 二次時效的歷史與發展 …………………………………… 41 3-2 疲勞試驗 …………………………………………………… 44 3-2-1 疲勞裂縫成長機構 ………………………………………… 45 3-2-1-1 疲勞裂縫起始區 …………………………………………… 46 3-2-1-2 疲勞裂縫傳播區 …………………………………………… 49 3-2-1-3 超荷重區 …………………………………………………… 51 3-2-2 改善疲勞性質方法 ………………………………………… 52 3-2-3 人體植入材料的選用 ……………………………………… 53 第四章 實驗步驟…………………………………………………… 54 4-1 實驗流程 ……………………………………………………… 54 4-2 合金材料及製備 ……………………………………………… 55 4-3 合金熔煉與鑄造設備 ………………………………………… 55 4-4 滾軋製程 ……………………………………………………… 59 4-5 固溶處理 ……………………………………………………… 60 4-6 時效處理 ……………………………………………………… 60 4-7 試片規格及尺寸 ……………………………………………… 61 4-8 X光繞射分析 ………………………………………………… 63 4-9 金相顯微組織觀察 …………………………………………… 63 4-10 微硬度測試 …………………………………………………… 64 4-11 拉伸與疲勞測試 ……………………………………………… 64 4-11-1 拉伸測試 ……………………………………………………… 64 4-11-2 疲勞測試 ……………………………………………………… 65 4-12 掃描式電子顯微鏡 …………………………………………… 67 4-13 能量散佈分析儀 ……………………………………………… 68 第五章 實驗結果與討論 ………………………………………… 69 5-1 固溶後之成份分析與相組成 ………………………………… 69 5-2 固溶後之金相組織與硬度 …………………………………… 71 5-3 一次時效之機械性質 ………………………………………… 77 5-3-1 XRD相分析與金相 …………………………………………… 77 5-3-2 拉伸性質與硬度值 …………………………………………… 84 5-4 一次時效之疲勞性質 ………………………………………… 93 5-5 二次時效之拉伸性質 ………………………………………… 100 5-5-1 XRD相分析與金相 …………………………………………… 100 5-5-2 拉伸性質與硬度值 …………………………………………… 107 5-6 二次時效之疲勞性質 ………………………………………… 114 第六章 結論 ……………………………………………………… 120 第七章 參考文獻 ………………………………………………… 121

    C. Laird, Fatigue, Materials Science and Engineering, 25, 187-191, 1976.

    C. Ouchi, H. Suenaga, Y. Kohsaka, in: P. Lacombe, R. Tricot, G. Beranger(Eds.), Sixth World Conference on Titanium, Societe Francaise de Metallurgie, Les Ulis Cedex, France, 819-824, 1988.

    C.R. Brooks, Ashok Choudhury, Metallurgical Failure Analysis, McGraw-Hill, Inc., USA, 157-177, 1993.

    C.S Li, T. Bretheau, The role of grain boundary compatibility in fatigue cracking of aluminum bicrystals, Acta Metallurgica, 37, 10, 2645-2650, 1989.

    C.S. Shin, M.C. Fivel, M. Verdier, C. Robertson, Dislocation dynamics simulations of fatigue of precipitation-hardness materials, Materials Science and Engineering A, 400-401, 166-169, 2005.

    C.W. Lin, C.P. Ju, J.H. Chern Lin, A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys, Biomaterials, 26, 2899-2907, 2005.

    E.K. Molchanova, Israel Program for Scientific Translations, Jerusalem, 1965.

    E.W. Collings, Physical Metallurgy of Titanium Alloys. The Physical Metallurgy of Titanium Alloys, USA, 1988.

    I. Weiss, S.L. Semiatin, Thermomechanical processing of beta titanium alloys-an overview, Materials Science and Engineering A, 234, 46-65, 1998.

    J. Black, Biological Performance of Materials: Fundamentals of Biocompatibility, second ed., Marcel Dekker,1992.

    J.L. Murray, L.H. Bennett, H. Baker, Binary Phase Diagram, American Society for Metals, USA, 1986.

    K. Tokaji, K. Ohya, H. Karia, Effect of grain size and aging conditions on fatigue crack propagation behavior in beta Ti-22V-4Al alloy, Journal of the Iron and Steel Institute of Japan, 86, 11, 769-776, 2000.

    K.S. Katti, Biomaterials in total joint replacement, Colloids and Surfaces B: Biointerfaces, 39, 133-142, 2004.

    L.G. Machado, M.A. Savi, Brazilian Journal of Medical and Biological Research, 36, 683-691, 2003.

    M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr, Biomaterials, 24 2673-2683, 2003.

    M. Niinomi, Mechanical properties of biomedical titanium alloys, Materials Science and Engineering A, 243, 231-236, 1998.

    M. Niinomi, Recent metallic materials for biomedical applications, Metallurgical and Materials Transactions A, 33A, 477-486, 2002.

    M. Okada, Acceleration of α precipitation and strengthening of Ti-15V-3Cr-Sn-3Al alloy by two step aging, Journal of the Iron and Steel Institute of Japan, 76, 4, Apr, 614-621, 1990.

    M.J. Blackburn, J.C. Williams, Phase transformation in Ti-Mo and Ti-V alloys, Transaction of TMS-AIME, 242, 2461-2469, 1968.

    N. Niwa, A. Arai, H. Takatori, K.Ito, Mechanical properties of cold-worked and high-low temperature duplex-aging Ti-15V-3Cr-3Sn-3Al alloy, ISIJ international, 31, 8, 856-862, 1991.

    O.M. Ivasishin, P.E. Markovsky, S.L. Semiatin, C.H. Ward, Aging response of coarse- and fine-grained β titanium alloys, Materials Science and Engineering: A, 405, 1-2, 296-305, 2005.

    P.K. Poulose, M.A. Imam, in: P.A. Blenkinsop, W.J. Evans, H.M. Flower(Eds.), Titanium 95: Science and Technology, Institute of Metal, London, EK, 988-995, 1996.

    R. Filip, K. Kubiak, W. Ziaja, J. Sieniawski, The effect of microstructure on the mechanical properties of two-phase titanium alloys, Journal of Materials Processing technology, 133, 84-89, 2003.

    R.E. Reed-Hill, Physical metallurgy principles, PWS, USA, 748-761, 1994.

    R.I. Jaffee, N.E. Promisel, The Science, Technology, and Applications of Titanium, 851, 1970.

    R.R. Boyer, G. Lütjering, in: I. Weiss, R, Srinivasan, P.J. Bania, D. Eylon,
    S.L. Semiatin(Eds.), Advances in the Science and Technology of Titanium Alloy Processing, TMS, Warrendale, PA, USA, 349-367, 1997.

    T. Furuhara, T. Maki, T. Makino, Microstructure control by thermomechanicl processing in β-Ti-15- alloys, Journal of Materials Processing Technology, 117, 318-323, 2001.

    W. Liu, M. Bayerlein, H. Mughrabi, A. Day, P.N. Quested, Crystallographic features of intergranular crack initiation in fatigued copper polycrystals, Acta Metallurgica, 40, 7, 1763- 1771, 1992.

    W.F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, Inc., USA, 433-484, 1993.

    Y. Yang, K.H. Kimc, J.L. Ong, A review on calcium phosphate coatings produced using a sputtering process—an alternative to plasma spraying, Biomaterials, 26, 327-337, 2005.

    Y.L. Zhou, M. Niinomi, T. Akahori, Decomposition of martensite α” during aging treatment and resulting mechanical properties of Ti-Ta alloys, Materials Science and Engineering A, 371, 283-290, 2004.

    莫文偉, 形狀記憶合金, 1998.

    莊政和, 鈦鉬合金熱處理後機械性質之研究, 成功大學材料工程研究所碩士論文, 2004.

    簡嘉毅, 鈦-鉬合金熱處理後拉伸疲勞性質研究, 國立成功大學材料工程研究所碩士論文, 2005.

    無法下載圖示 校內:2026-07-27公開
    校外:2056-07-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE