| 研究生: |
沈宏軒 Shen, Hong-Syuan |
|---|---|
| 論文名稱: |
24與60 GHz CMOS收發開關及3-10 GHz超寬頻低雜訊放大器之研究設計 Design of 24 and 60 GHz CMOS T/R Switches and 3-10 GHz UWB LNA |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 低雜訊放大器 、超寬頻 、24 GHz 、60 GHz 、收發開關 |
| 外文關鍵詞: | LNA, UWB, T/R Switch, 60 GHz, 24 GHz |
| 相關次數: | 點閱:92 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研製24與60 GHz CMOS射頻開關及3-10 GHz CMOS超寬頻低雜訊放大器。60-GHz收發開關晶片製作使用國家晶片中心(CIC)提供之TSMC CMOS 0.13 μm製程,而24-GHz射頻收發開關與3-10 GHz超寬頻低雜訊放大器採用TSMC CMOS 0.18 μm製程製作。
60-GHz CMOS收發開關採用基極浮接架構。量測結果顯示:在57-64 GHz頻段內,直流偏壓為1.2V(ON) / 0V (OFF)、總消耗功率約為0 mW、天線端反射損失10.8-13.5 dB、Rx反射損失14.7-20.6 dB、Tx端反射損失12.3-17.4 dB、Rx端插入損耗為8.1-8.7 dB、隔離度26.6-28.6 dB,Tx端插入損耗為8.2-9.2 dB、隔離度28.2-31.7 dB。 IP1dB為11 dBm、IIP3為18.4 dBm。24-GHz CMOS收發開關採用基極浮接與洩漏訊號消除架構。量測結果顯示:在24 GHz,直流偏壓為1.2 V / 0V、天線端反射損失大於13.3 dB、Rx反射損失大於12.8 dB、Tx端反射損失大於12.6 dB、Rx端插入損耗為7.3 dB、Tx端插入損耗為7.4 dB、Rx與Tx端隔離度為34.3 dB。IP1dB為18 dBm、IIP3為28.5 dBm。3-10 GHz超寬頻低雜訊放大器採用並-並式電阻回授與源極退化電感方式進行設計,並-並式電阻回授有助於輸入匹配的實現與雜訊的設計。量測結果顯示:在3.1-10.6 GHz之頻段,直流偏壓為1.0 V/15.0 mA,輸入反射損失大於13.8 dB,輸出返射損耗大於13.2 dB,增益為6.1-10.5 dB,隔離度大於31.2 dB,IP1dB為-15.8 - -7.4 dBm,IIP3為-4-2.8 dBm,雜訊指數為4.1-5.3 dB。3dB頻寬處,為3.1-9 GHz,功率增益為7.5-10.5 dB,雜訊指數為4.1-5 dB,IP1dB為-15.8--9 dBm,IIP3為-4–1.5 dBm。
This thesis presents the design of a 24 and 60 GHz CMOS T/R switches and a 3-10 GHz CMOS UWB low-noise amplifier (LNA). The 60 GHz T/R switch are fabricated with TSMC CMOS 0.13-μm process. In addition, The 24 GHz T/R switch and 3-10 GHz UWB LNA are fabricated with TSMC CMOS 0.18-μm process. The 60 GHz CMOS T/R switch adopts the body-floating technology. The 24 GHz CMOS T/R switch utilizes the leakage cancellation and body-floating technologies. The 3-10 GHz UWB LNA uses the resistive shunt feedback and source degeneration inductor to achieve a good input return loss and low noise figure.
[1]C. Koh, “The benefits if 60 GHz unlicensed wireless communications,”2004
[2]http://www.dailywireless.org/2006/11/13/more-70ghz-radios/
[3]N. Guo, R. C. Qiu, S. S. Mo, and K. Takahashi, “60 GHz millimeter-wave radio:Principle, technology, and new results,” EURASIP Journal on Wireless Communications and Networking,vol.2007, 2007
[4http://domino.research.ibm.com/comm/research_projects.nsf/pages/mmwave.apps.html
[5]Y. Kawano, Y. Nakasha, K. Yokoo, S. Masuda, T. Takahashi, T. Hirose, Y. Oishi, and K. Hamaguchi, “RF chipset for impulse UWB radar using 0.13-μm InP-HEMT Technology,” IEEE Transactions Microw. Theory Tech., vol. 54, no.12, pp. 4489-4498, Dec. 2006
[6]http://www.informit.com/articles/article.aspx?p=433381&seqNum=10
[7]http://tech.digitimes.com.tw/ShowNews.aspx?zCatId=12C&zNotesDocId=7D7AE8A376ADC12A48256FCB000CFE72
[8]S. Jose, “Design of RF CMOS power amplifier for UWB application,” Thesis for Master of Science, Department of Electrical Engineering, Virginia Polytechnic Institute and State University, 2004.
[9]C. Tinella, J. M. Fournier, D. Belot, and V. Knopik, “A high-performance CMOS-SOI antenna switch for 2.5-5-GHz band,” IEEE Journal of Solid-State Circuits, vol.38, pp. 1279-1283, July 2003.
[10]B.-W. Min and G. M. Rebeiz, “Ka-band low-loss and high-isolation 0.13μm CMOS SPST/SPDT switches using high substrate resistance,” in Radio Frequency Integrated Circuits (RFIC) Symp. pp.569-572, June 2007.
[11]S.-C. Chang, S.-F. Chang, T.-Y. Chih, and J.-A. Tao, “An internally-matched high-isolation CMOS SPDT switch using leakage cancellation technique,” IEEE Micro. Wireless Compon. Lett., vol.17, no.7, July 2007.
[12]F.-J. Huang and K.O, “A 0.5 μm CMOS T/R switch for 900-MHz wireless application,” IEEE Journal of Solid-State Circuits, vol.36, no.3, pp.486-492, Mar. 2001.
[13]M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang, and H. Wang, “Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance,” IEEE Transactions Microwave Theory Tech., vol.54, no.1, pp.31-39 Jan. 2006.
[14]C.-C. Wu, A. Yen, and J.-C. Chang, “A 0.13μm CMOS T/R switch design for ultrawideband wireless applications,”in IEEE Int. Symp. on Circuits and Systems, pp.3758-3761, May 2006.
[15]P. Park, D. H. Shin, J. J. Pelarik, M. Rodwell, and C. P. Yue, “A high-linearity, LC-tuned, 24-GHz T/R switch in 90-nm CMOS,” in Radio Frequency Integrated Circuits (RFIC) Symp., pp.369-372, June 2008.
[16]C. M. Ta, E. Skafidas, and Robin J. Evans, “A 60-GHz CMOS transmit/receive switch,” in Radio Frequency Integrated Circuits (RFIC) Symp. , pp.725-728, June 2007.
[17]C. H. Doan, S. Emami, D. A. Sobel, A. M. Niknejad, and R. W. Brodersen, “Design considerations for 60 GHz CMOS radio,” IEEE Commun. Mag., vol.42, no.12, pp.132-140, Dec. 2004.
[18]S. Yoshitomi, H. Kimijima, K. Kojima, and H. Kokatsu, “An accurate prediction of high-frequency circuit behaviour,” Journal of Telecommunication and Iinformation Ttechnology, pp.47-61, 2005.
[19]T. M. Hancock and G. M. Rebeiz, “A 12-GHz SiGe phase shifter with integrated LNA,” IEEE Trans. Microw. Theory Tech., vol.53, no.3, pp.977-983, Mar. 2005.
[20]Z. Li, and K. K. O, “ 15-GHz fully integrated nMOS switch in a 0.13-μm CMOS process,” IEEE Journal of Solid-State Circuits, vol. 40, no.11,2005
[21]T. H. Lee, The Design of CMOS Radio-frequency Integrated Circuit, Cambridge University Press, 1998.
[22]B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw Hill, 2001
[23]D. K. Shaffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE Journal of Solid-State Circuit, vol. 32, No. 5, pp.745-759, May 1997.
[24]G. Gonzalez, Microwave Transistor Amplifier Analysis and Design, Prentice Hall, 1997.
[25]R. Ludwig, and P. Bretchko, RF Circuit Design Theory and Applications, Prentice Hall, 2000.
[26]H. Zhang and G. Chen, “Analysis and design of a CMOS low noise amplifier for 3-5 GHz UWB Systems,” in Proc. Int. Conf. Microw. Millimeter Wave Tech, pp.1-4, Apr. 2007.
[27]K.-H. Chen et al., “An ultra-wide-band 0.4-10-GHz LNA in 0.18 μm CMOS,” IEEE Trans. Circuits Syst. II, vol.54, no.3, pp.217-221, Mar.2007.
[28]C.-H. Wu, C.-H. Lee, W.-S Chen, and S.-I. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE Journal of Solid-State Circuits, vol.40, no.2, pp.548-552, Feb. 2005.
[29]B. Analui, and A. Hajimiri, “Multi-pole bandwidth enhancement technique for transimpedance amplifiers,” ESSCIRC, pp.303-306, 2002.
[30]鐘豪文,超寬頻UWB無線射頻射頻收發機之寬頻CMOS RFICs 的設計研究,國立成功大學電腦與通信工程研究所碩士論文,民國九十五年
[31]Y.-C. Chen, W.-K. Yen, R.-L. Wang, and H.-D. Yen, “2~10 GHz UWB low noise amplifier using a cascode structure with resistive shunt feedback,” Asia-Pacific Conference Proceedings (APMC), pp.1-3, Dec. 2007.
[32]C.-F. Liao, and S.-I. Liu, “A broadband noise-canceling CMOS LNA for 3.1-10.6-GHz UWB Receivers,” IEEE Journal of Solid-State Circuits, vol.42, no.2, pp.329-339, Feb. 2007.
[33]T. Taris, JB. Begueret, and Y. Deval, “A low voltage current reuse LNA in a 130 nm CMOS technology for UWB applications,” European Microwave Conference, 2007.
[34]H.-M. Hsu. and C.-J. Hsu, “Design of Broadband CMOS Amplifier Using Bandwidth-Compensation Technique,” European Microwave Conference, 2008.
[35]A. Meaamar, B. C. Chye, D. M. Anh, and Y. K. Seng, “A 3-8 GHz low-noise CMOS amplifier” IEEE Microwave and Wireless Components Letters , vol.19, pp. 245-247, April 2009