| 研究生: |
黃建科 Huang, Chien-Ke |
|---|---|
| 論文名稱: |
以第一原理計算探討橄欖石高電位正極材料表面特性與碳修飾之影響 First Principles study of surface properties and carbon coating effects on high voltage olivine cathode in lithium ion battery |
| 指導教授: |
許文東
Hsu, Wen-Dung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 第一原理計算 、鋰離子電池 、橄欖石結構 、高電位正極 、表面特性 、碳修飾 、鋰鎳磷氧 |
| 外文關鍵詞: | First-principles, LiNiPO4, High voltage cathode, carbon coating, surface properties |
| 相關次數: | 點閱:63 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在科技的快速發展以及電動車的普及下,以鋰離子電池為基礎發展的儲能系統也
必須具有更高的能量密度與功率密度以達到應用需求,為了達成此目的,高電位的正
極材料成為一發展的方向,而橄欖石結構的高電位正極材料為目前潛在可運用的材料
之一,其中的鋰鎳磷氧(LiNiPO4,LNP)正極材料具有較高的電位與電容量,但是現階
段對於此材料的特性討論並不充足,因此本研究利用 DFT 第一原理計算方法,透過
建立 LNP 表面重構模型,進行表面能的計算以及 Wulff shape 的建立發現 LNP (010)
與(201)表面在(010),(201),(101),(100),(011)五個低指數表面中具有較低的表面能,同時
也為 LNP 顆粒平衡時最容易裸露在外的兩個表面,並且態密度分析顯示(011)面相較
其他表面具有較低的能隙。
而後以第一原理分子動力學方法建立非晶碳層模型並修飾於 LNP 正極表面建立
LNP/C 系統,計算後發現 LNP 僅有(010)表面氧的位置(site1,site3)傾向與碳層做吸附,
且吸附過程為一化學吸附並具熱力學穩定性,同時非晶碳層吸附只會影響吸附界面處
的電荷密度,並不影響 LNP 正極內部的電荷分佈,吸附界面處則以碳氧間原子作用
力為主。
在態密度分析下非晶碳層的修飾會使 LNP(010)表面的費米能階產生表面碳層 p
軌域的 state 使其整體導電特提升,並且透過建立 88%與 29%鋰含量的充電模型,以
熱力學計算探討 LNP 與 LNP/C 系統鋰遷出的容易程度發現在初始與深度充電的情形
下,非晶碳層修飾皆有助於鋰由 LNP 正極表面遷出,而鋰由次表面遷出至表面的趨
勢則會隨非晶碳層結構不同而改變。
In this study, the surface properties of the high potential olivine cathode LNP was
studied and a model of carbon layer modification was successfully developed to observe the effect of amorphous carbon layer modification on the LNP cathode by first-principles calculation.
1. Mizushima, K., et al., LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 1980. 15(6): p. 783-789.
2. Goodenough, J.B. and K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society, 2013. 135(4): p. 1167-1176.
3. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
4. Chung, D., E. Elgqvist, and S. Santhanagopalan, Automotive lithium-ion cell manufacturing: Regional cost structures and supply chain considerations. 2016, National Renewable Energy Lab.(NREL), Golden, CO (United States).
5. Meng, Y.S. and M.E. Arroyo-de Dompablo, Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Accounts of chemical research, 2013. 46(5): p. 1171-1180.
6. Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
7. Yazami, R., et al., Mechanism of electrochemical performance decay in LiCoO2 aged at high voltage. Electrochimica Acta, 2004. 50(2-3): p. 385-390.
8. Rozier, P. and J.M. Tarascon, Review—Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges. Journal of The Electrochemical Society, 2015. 162(14): p. A2490-A2499.
9. Sun, H. and K. Zhao, Electronic Structure and Comparative Properties of LiNixMnyCozO2 Cathode Materials. The Journal of Physical Chemistry C, 2017. 121(11): p. 6002-6010.
10. Ryu, H.-H., et al., Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? Chemistry of Materials, 2018. 30(3): p. 1155-1163.
11. Xia, Y., et al., Designing principle for Ni-rich cathode materials with high energy density for practical applications. Nano Energy, 2018. 49: p. 434-452.
12. Mohanty, D., et al., Resolving the degradation pathways in high-voltage oxides for high-energy-density lithium-ion batteries; Alternation in chemistry, composition and crystal structures. Nano Energy, 2017. 36: p. 76-84.
13. Yan, P., et al., Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat Commun, 2017. 8: p. 14101.
14. Chakraborty, A., et al., Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–yCoxMnyO2 and LiNi1–x–yCoxAlyO2. Chemistry of Materials, 2020. 32(3): p. 915-952.
15. Julien, C.M. and A. Mauger, Review of 5-V electrodes for Li-ion batteries: status and trends. Ionics, 2013. 19(7): p. 951-988.
16. Shin, Y. and A. Manthiram, Factors influencing the capacity fade of spinel lithium manganese oxides. Journal of the Electrochemical Society, 2004. 151(2): p. A204.
17. Lin, M., et al., Insight into the Atomic Structure of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material in the First Cycle. Chemistry of Materials, 2015. 27(1): p. 292-303.
18. Wang, B., et al., Desired crystal oriented LiFePO 4 nanoplatelets in situ anchored on a graphene cross-linked conductive network for fast lithium storage. Nanoscale, 2015. 7(19): p. 8819-8828.
19. Rommel, S.M., et al., Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO4. Monatshefte für Chemie - Chemical Monthly, 2014. 145(3): p. 385-404.
20. Örnek, A., E. Bulut, and M. Can, Influence of gradual cobalt substitution on lithium nickel phosphate nano-scale composites for high voltage applications. Materials Characterization, 2015. 106: p. 152-162.
21. Örnek, A. and M.Z. Kazancioglu, A novel and effective strategy for producing core-shell LiNiPO4/C cathode material for excellent electrochemical stability using a long-time and low-level microwave approach. Scripta Materialia, 2016. 122: p. 45-49.
22. Kutteh, R. and M. Avdeev, Initial Assessment of an Empirical Potential as a Portable Tool for Rapid Investigation of Li+ Diffusion in Li+-Battery Cathode Materials. The Journal of Physical Chemistry C, 2014. 118(21): p. 11203-11214.
23. Fisher, C.A.J., V.M. Hart Prieto, and M.S. Islam, Lithium Battery Materials LiMPO4 (M = Mn, Fe, Co, and Ni): Insights into Defect Association, Transport Mechanisms, and Doping Behavior. Chemistry of Materials, 2008. 20(18): p. 5907-5915.
24. Ramana, C.V., et al., Structural Characteristics of Lithium Nickel Phosphate Studied Using Analytical Electron Microscopy and Raman Spectroscopy. Chemistry of Materials, 2006. 18(16): p. 3788-3794.
25. Kempaiah Devaraju, M., et al., Synthesis, characterization and observation of antisite defects in LiNiPO4 nanomaterials. Scientific Reports, 2015. 5(1): p. 11041.
26. Shi, J., Effect of Antisite Defects on Li Ion Diffusion in LiNiPO4: a First Principles Study. International Journal of Electrochemical Science, 2016: p. 9067-9073.
27. Wu, F.X., J. Maier, and Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 2020. 49(5): p. 1569-1614.
28. Shang, S.L., et al., Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): a comparative first-principles study. Journal of Materials Chemistry, 2012. 22(3): p. 1142-1149.
29. Tolganbek, N., et al., Current state of high voltage olivine structured LiMPO4 cathode materials for energy storage applications: A review. Journal of Alloys and Compounds, 2021. 882.
30. Ornek, A., The synthesis of novel LiNiPO4 core and Co3O4/CoO shell materials by combining them with hard-template and solvothermal routes. J Colloid Interface Sci, 2017. 504: p. 468-478.
31. Karthikprabhu, S., et al., Electrochemical performances of LiNi1−xMnxPO4 (x = 0.05–0.2) olivine cathode materials for high voltage rechargeable lithium ion batteries. Applied Surface Science, 2018. 449: p. 435-444.
32. Snydacker, D.H. and C. Wolverton, Transition-Metal Mixing and Redox Potentials in Lix(M1–yM′y)PO4 (M, M′ = Mn, Fe, Ni) Olivine Materials from First-Principles Calculations. The Journal of Physical Chemistry C, 2016. 120(11): p. 5932-5939.
33. Wang, L., et al., First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential. Physical Review B, 2007. 76(16): p. 165435.
34. Fisher, C.A.J. and M.S. Islam, Surface structures and crystal morphologies of LiFePO4: relevance to electrochemical behaviour. Journal of Materials Chemistry, 2008. 18(11): p. 1209-1215.
35. Tasker, P.W., The stability of ionic crystal surfaces. Journal of Physics C: Solid State Physics, 1979. 12(22): p. 4977-4984.
36. Geng, W.T., et al., Formation of Perpendicular Graphene Nanosheets on LiFePO4: A First-Principles Characterization. The Journal of Physical Chemistry C, 2012. 116(33): p. 17650-17656.
37. Born, M. and R. Oppenheimer, Zur Quantentheorie der Molekeln. Annalen der Physik, 1927. 389: p. 457-484.
38. Sholl, D. and J.A. Steckel, Density functional theory: a practical introduction. 2011: John Wiley & Sons.
39. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas. Physical Review, 1964. 136(3B): p. B864-B871.
40. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133-A1138.
41. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996. 77(18): p. 3865-3868.
42. Ziesche, P., S. Kurth, and J.P. Perdew, Density functionals from LDA to GGA. Computational materials science, 1998. 11(2): p. 122-127.
43. Kraisler, E., Asymptotic Behavior of the Exchange‐Correlation Energy Density and the Kohn‐Sham Potential in Density Functional Theory: Exact Results and Strategy for Approximations. Israel Journal of Chemistry, 2020. 60(8-9): p. 805-822.
44. Hamann, D.R., M. Schlüter, and C. Chiang, Norm-Conserving Pseudopotentials. Physical Review Letters, 1979. 43(20): p. 1494-1497.
45. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758-1775.
46. Vanderbilt, D., Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B, 1990. 41(11): p. 7892-7895.
47. Blöchl, P.E., Projector augmented-wave method. Physical Review B, 1994. 50(24): p. 17953-17979.
48. Dudarev, S.L., et al., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Physical Review B, 1998. 57(3): p. 1505-1509.
49. Terakura, K., et al., Band theory of insulating transition-metal monoxides: Band-structure calculations. Physical Review B, 1984. 30(8): p. 4734-4747.
50. Hüfner, S., Electronic structure of NiO and related 3d-transition-metal compounds. Advances in Physics, 1994. 43(2): p. 183-356.
51. Grimme, S., et al., A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of chemical physics, 2010. 132(15): p. 154104.
52. Wulff, G., Xxv. zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen. Zeitschrift für Kristallographie-Crystalline Materials, 1901. 34(1-6): p. 449-530.
53. Rottman, C. and M. Wortis, Statistical mechanics of equilibrium crystal shapes: Interfacial phase diagrams and phase transitions. Physics Reports, 1984. 103(1): p. 59-79.
54. Zucker, R.V., et al., New software tools for the calculation and display of isolated and attached interfacial-energy minimizing particle shapes. Journal of Materials Science, 2012. 47(24): p. 8290-8302.
55. Makov, G. and M.C. Payne, Periodic boundary conditions in ab initio calculations. Physical Review B, 1995. 51(7): p. 4014-4022.
56. Car, R., Introduction to Density‐Functional Theory and ab‐Initio Molecular Dynamics. Quantitative Structure‐Activity Relationships, 2002. 21(2): p. 97-104.
57. Marx, D. and J. Hutter, Ab initio molecular dynamics: Theory and implementation. Modern methods and algorithms of quantum chemistry, 2000. 1(301-449): p. 141.
58. Tse, J.S., AB INITIO MOLECULAR DYNAMICS WITH DENSITY FUNCTIONAL THEORY. Annual Review of Physical Chemistry, 2002. 53(1): p. 249-290.
59. Kittel, C. and P. McEuen, Kittel's Introduction to Solid State Physics. 2018: John Wiley & Sons.
60. Rui, X., et al., Olivine-Type Nanosheets for Lithium Ion Battery Cathodes. ACS Nano, 2013. 7(6): p. 5637-5646.
61. Wu, Y., et al., An alginic acid assisted rheological phase synthesis of carbon coated Li3V2(PO4)3 with high-rate performance. Journal of Alloys and Compounds, 2014. 616: p. 32-41.
62. Yu-Jen Tsai, C.-L.K., First-principle Study of Alkali Metal Storage and CO2 Conversation in Two-dimensional and Amorphous Materials, in Department of Materials Science and Engineering College of Engineering. 2021, National Taiwan University.
63. Zhang, Z., et al., Atomistic investigation on lithiation mechanism of silicon incorporated with amorphous carbon layer as anode material for lithium-ion battery. Applied Surface Science, 2019. 494: p. 111-115.