簡易檢索 / 詳目顯示

研究生: 蘇鈺荃
Su, Yu-Chuan
論文名稱: 電弧爐渣重金屬溶出特性及作為級配材料之可行性研究
Heavy metal leaching characteristics of electric arc furnace slags and its feasibility on reusing in graded aggregates
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 120
中文關鍵詞: 電弧爐渣級配材料溶出試驗重金屬
外文關鍵詞: electric arc furnace slags, graded aggregates, leaching tests, heavy metals
相關次數: 點閱:161下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電弧爐渣為廢鋼冶煉過程所產生的副產物,依製程階段不同一般可分為還原渣與氧化渣,兩者之主要成分皆為鈣、矽、鐵等元素,具有替代天然砂石作為土地填方、道路級配等工程材料之潛力。本研究以電弧爐還原渣與氧化渣作為試驗目標,探討爐渣物化特性差異及作為級配材料之可行性,並以歐盟整合環境性溶出/萃取試驗程序(CEN/TS 14429 pH關聯性試驗與CEN/TS 14405管柱溶出試驗)進行電弧爐渣之溶出試驗,探討其重金屬溶出特性與環境相容性,並推求百年釋入量。另外以LeachXS專家系統分析電弧爐渣溶出模式及模擬各環境條件下溶出特性之變化。
    歸納實驗結果可知,還原渣與氧化渣因其製程條件不同,造成材料特性迥異。還原渣富含鈣系化合物,而氧化渣中鐵與重金屬含量皆高於還原渣。在基本工程材料性質方面,還原渣之洛杉磯磨損率高於道路工程規範,健性亦較氧化渣差,較不適於再利用為道路級配材料。由pH相關聯性試驗可知氧化渣之重金屬溶出量高於還原渣,而利用管柱溶出試驗結果計算各重金屬之百年釋入量,可知電弧爐渣溶出特性可符合荷蘭建築材料指令(Building Materials Decree,BMD)規範。最後將pH關聯性試驗及管柱溶出試驗結果與LeachXS資料庫比對可發現,電弧爐渣之溶出特性與國外再生資材差異不大,各pH範圍間重金屬溶出趨勢相近,且各液固比之累積濃度低於部份國外再生資材。由前述重金屬百年釋入量並相較於國外再生資材之溶出特性,可說明電弧爐渣應具相當之環境相容性及作為再生材料之潛力。

    Electric arc furnace slag is the by-products produced by the scrap smelting process, which can be divided into reduction slag and oxidation slag according to the manufacturing process. Both of these two types contain calcium, silicon, iron as main components, and have the potential to substitute the natural gravel to used in structure fill, road grading, and construction materials. In this study, the EAF reduction slag and oxidation slag were used to investigate the differences in physical and chemical properties and its feasibility in graded material application. Moreover, long-term leaching test was conducted by combination of CEN/TS 14429 pH dependence test and CEN/TS 14405 column test for EAF slag to discuss the leaching characteristics of heavy metal and the environmental compatibility. On the other hand, leachXS expert systems were utilized to analyze dissolution model and simulate various environmental conditions of electric arc furnace slag.
    The results showed that reduction slag and oxidation slag have significant difference in characteristics because of the different process conditions, such as reduction slag is rich in calcium compounds, whereas oxidation slag contains higher level of iron and heavy metals than the reduction slag. In the engineering properties, reduction slag has poor abrasion resistance and soundness than oxidation slag. Thus reduction slag is less suitable in reuse for road graded materials. The pH dependence test shows that oxidation slag has higher amounts of heavy metal leaching than that of reduction slag. The released amount of heavy metals in 100 years calculated from the column test results shows the leaching characteristics of EAF slag materials can meet the BMD (building material degrees) norms. Lastly, it was found that the leaching characteristics do not significant difference between EAF slag and foreign recycled materials when comparing the results of-leaching test with LeachXS database. Each pH range between the heavy metal leaching trends are similar, and the L/S ratio of cumulative concentrations are less than foreign recycled materials. Based on aforementioned finding, EAF slag can be infer to have environmental compatibility and potential for recycled materials.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 表目錄 X 圖目錄 XII 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究內容 2 第二章 文獻回顧 4 2-1 電弧爐渣之產出與基本特性 4 2-1-1 電弧爐製程及爐渣產出 4 2-1-2電弧爐渣之物化特性 6 2-2爐渣之處置與再利用現況 11 2-2-1國內外爐渣資源化應用現況 11 2-2-2國內爐渣資源化遭遇之困難 13 2-2-3煉鋼爐渣之安定化法 14 2-2-4爐渣應用於填路及鋪面工程材料 17 2-3再生材料之重金屬溶出特性 22 2-3-1影響溶出行為之因素 22 2-3-2重金屬溶出行為 29 2-4 國內外爐渣資源化之環境管理規範簡及溶出試驗方法 31 2-4-1 台灣 31 2-4-2 日本 32 2-4-3 美國 33 2-4-4 德國 34 2-4-5 荷蘭 34 2-4-6 歐盟 38 2-5 小結 42 第三章 研究材料、設備與方法 44 3-1 研究架構與流程 44 3-2 研究材料與設備 47 3-2-1 研究材料 47 3-2-2 實驗藥品 47 3-2-3 實驗設備 48 3-3 實驗及分析方法 49 3-3-1爐渣之物化特性分析 49 3-3-2粒料基本工程性質分析 53 3-3-3 溶出特性試驗方法 55 3-3-4 LeachXS專家系統 59 第四章 結果與討論 61 4-1 電弧爐渣基本特性 61 4-1-1 物理特性 61 4-1-2 化學特性 64 4-1-3 小結 70 4-2 電弧爐渣作為級配材料之工程特性 71 4-2-1爐渣粒徑與物化特性之關係 71 4-2-2 電弧爐渣作為級配材料之工程特性 77 4-2-3電弧爐渣之溶出毒性特性 82 4-2-4 小結 84 4-3 電弧爐渣之長期溶出特性 85 4-3-1 電弧爐渣之pH關聯性溶出特性 85 4-3-2 電弧爐渣於向上滲流管柱試驗之溶出特性 94 4-3-3 小結 101 4-4 電弧爐渣之環境衝擊初步評估 103 4-4-1 電弧爐渣pH相關聯性溶出試驗與資料庫比對結果 103 4-4-2電弧爐渣管柱溶出試驗與資料庫比對結果 108 4-4-3 小結 111 第五章 結論與建議 112 5-1結論 112 5-2建議 114 參考文獻 115

    Astrup, T., Dijkstra, J.J., van der Sloot, H.A., Comans, R.N.J., Christensen, T.H., Geochemical modeling of leaching from MSWI air-pollution-control residues. Environmental Science and Technology, 40, 3551-3557, 2006.
    Barna, R., Moszkowicz P., Gervais, C., Leaching assessment of road materials containing primary lead and zinc slags. Waste Management, 24, 945-955, 2004.
    CEN/TS 14429: Characterization of waste – Leaching behaviour tests influence of pH on leaching with initial acid/base addition, British Standards Institution.
    CEN/TS 14405: Characterization of waste – Leaching behaviour tests Up-flow percolation test (under specified conditions), British Standards Institution.
    Chen, Q.Y., Johnson, D.C., Zhu, L.G., Yuan, M.H., Hill, C.D., Accelerated carbonation and leaching behavior of the slag from iron and steel making industry. Journal of University of Science and Technology Beijing, 14, 297-301, 2007.
    Chuan, M.C., Shun, G.Y., Liu, J.C., Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water, Air and Soil pollution, 90, 543-556, 1996.
    Chuanyong J., Xiaoguang M., George P.K., Lead leachability in stabilized/solidified soil samples evaluated with different leaching tests. Journal of Hazardous Materials, 114, 101–110, 2004.
    Cornelis, G., Jonhson, A., Gerven, T.V., Vandecasteele, C., Leaching mechanisms of oxyanionnic metalloid and metal species in alkaline solid wastes: a review. Applied geochemistry, 23, 955-976, 2008.
    Crawford, C.B., Burn, K.N., Building damage from expansive steel slag backfill. Journal of the Soil Mechanics and Foundation Division, 95, 1325-1334, 1969.
    Dijkstra, J.J., van der Sloot, H.A., Comans, R.N.J., The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Applied Geochemistry, 21, 335-351,2006.
    Dijkstra, J.J., van der Sloot, H.A., Comans, R.N.J., Process identification and model development of contaminant transport in MSWI bittom ash. Waste Management, 22, 531-541, 2002.
    Fallman, A.M., Leaching of chromium and barium from steel slag in laboratory and field test – a solubility controlled process?. Waste Management, 20, 149-154, 2000.
    Huijgen, W.J., Comans, R.N.J., Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environmental Science and Technology, 40, 2790-2796, 2006.
    Jaana Sorvari, By-Products in Earth Construction: Environmental Assessments. Journal of environmental engineering, 129, 899-909, 2003.
    Johnson, C.A., Kersten, M., Ziegler, F., Moor, H.C., Leaching behaviour and solubility controlling solid phases of heavy metals in municipal solid waste incinerator ash. Waste Management, 16, 129-134, 1996.
    Kosson D.S., van der Sloot, H.A., Integration of testing protocols for evaluation of contaminant release from monolithic and granular wastes. Waste Management, 1997.
    Kosson, D.S., van der sloot, H.A., Sanchez, F., Garrabrants, A.C., An integrated framework for evaluating leaching in waste management and utilization of secondary materials, Environmental Engineering Science, 19, 159-204 ,2002.
    Lide, D.R., CRC handbook of chemistry and physics., Taylor and Francis, BocaRaton, FL. 2007.
    Muhmood L., Vitta S., Venkateswaran D., Cementitious and pozzolanic behavior of electric arc furnace steel slags. Cement and concrete research, 39, 102-109, 2009.
    Meima, J.A., van der Weijden, R.D., Eighmy, T.T., Comans, R.N.J., Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Applied Geochemistry, 17, 1503-1513, 2002.
    NEN 7345: Leaching characteristics of solid earthy and stony building and waste materials.leaching tests. Determination of the leaching of inorganic components from buildings and monolithic waste materials by diffusion test, Dutch Standards-institute.
    NEN 7341:leaching characteristics of solid earthy and stony building and waste materials.leaching tests. Determination of the availability for leaching of inorganic components, Dutch Standards-institute.
    Payne T.E., Itakura T., Comarmond M.J., Environmental mobility of cobalt-Influence of solid phase characteristics and groundwater chemistry. Applied radiation and isotopes, 67, 1269-1276, 2009.
    Proctor D.M., Fehling K.A., Shay E.C., et al. Physical and chemical characteristics of blast furnace, basic oxygen furnace, and electric arc furnace steel industry slags. Environmental science & technology, 34, 1576-1582, 2000.
    Van der Sloot, H.A., Present status of waste management in the Netherlands. Waste Management, 16, 375-383, 1996.
    Van der Sloot, H.A., Dijkastra, J.J., Development of horizontally standardized leaching tests for construction materials: a material based or release based approach ?. Identical leaching mechanisms for different materials, ECN-04-060, 2004.
    Van der Sloot, H. A., Meeussen, J. C. L., van Zomeren, A., Kosson, D. S., Devolopment in characterization of waste materials of environmental impact assessment purposes. 88, 72-76, 2006.
    Van der Sloot, H.A., Comparison of the characteristic leaching behavior of cements using standard (EN 196-1) cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling. Cement and Concrete Research . 1079-1096, 2000.
    Van der Sloot, H.A., Hoede, D., Cresswell, D.J.F., Barton, J.R., Leaching behaviour of synthetic aggregates. Waste Management, 2001.
    Vehlow, J., Municipal solid waste management in Germany. Waste Management , 16, 367-374, 1996.
    Wahlstrom, M., Nordic recommendation for leaching tests for granular waste materials. Science of the Total Environment, 178, 95-102, 1996.
    Xian, X., Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants. Plant and Soil, 113, 257-264, 1989.
    中國鋼鐵公司,中鋼社會責任報告書,2006。
    王金鐘,轉爐石做為基底材料及工程特性之研究,國立成功大學環境工程學系,博士論文,2005。
    王明光,王敏昭,實用儀器分析,合記圖書出版社,台北,2003。
    江慶陞,爐石的資源化,技術與訓練6卷9期,1981。
    行政院環保署廢管處,統計資料,2009。
    林志棟、陳世晃、張芳志,“台灣地區推動再生瀝青混凝土廠認可制度及提昇品質教育訓練”,再生瀝青混凝土廠品質提升研討會專輯,1-30頁,2001。
    施百鴻, 歐盟CPD及荷蘭BMD指令引進計畫期末報告,財團法人成大研究發展基金會,2009。
    張益國。 轉爐石長期溶出特性驗證及台灣土壤涵容標準初步規劃,中華民國環境工程學會,廢棄物處理技術研討會,2007。
    張祖恩,中鋼公司轉爐石之長期穩定性與環境相容性探討,財團法人成大研究發展基金會,2003。
    張高僑。鈣系爐渣封存二氧化碳行為之研究,國立成功大學環境工程學系碩士論文,2008。
    彭宇男,不同粒料轉爐石整合性溶出行為探討,輔英科技大學環境工程研究所,碩士論文,2010。
    陳崇智,資源化產品認證與程序驗證技術期末報告,工業技術研究院,2007。
    陳盈良,以歐盟pH關聯性溶出試驗探討轉爐石溶出特性報告書, 國立成功大學永續環境科技研究中心,2009。
    黃兆龍, 混凝土性質與行為,詹氏書局,台北,1997。
    新日本製鐵株式會社,新日本環境社會報告書,2009。
    詹詠翔,養生條件對轉爐石溶出行為之影響,國立成功大學環境工程學系,碩士論文,2009。
    楊貫一,爐石資源化中鋼公司爐石應用的過去與未來,第17卷,第一期,1992。
    楊景玲,朱桂林,孫樹杉,我國鋼鐵渣資源化利用現況及發展趨勢,冶金環境保護,2009。
    趙永楠,以動態/半動態溶出程序評估都市垃圾焚化底灰長期穩定特性之研究,國立台灣大學環境工程學研究所,碩士論文,2003。
    劉國忠, 煉鋼爐渣之資源化技術與未來推展方向,環保月刊,第四期十月號,2001。
    蘇茂豐,陳立,電弧爐煉鋼爐渣之資源化現況與未來展望,工業污染防治,第93 期,第27~51 頁,2005。
    蘇茂豐,電弧爐爐渣之資源化歷程,綠基會通訊,11~14 頁,2010。

    下載圖示 校內:2014-08-09公開
    校外:2014-08-09公開
    QR CODE