簡易檢索 / 詳目顯示

研究生: 張朝順
Chang, Chao-Shun
論文名稱: 聚醋酸乙烯與脂肪族聚酯類高分子混摻之相容性與球晶型態探討
Miscibility and Crystalline Morphology in Blends of Poly (vinyl acetate) with a Homologous Series of Aliphatic Polyesters
指導教授: 吳逸謨
Woo, E.M
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 108
中文關鍵詞: 聚醋酸乙烯脂肪族聚酯類高分子相容性混摻球晶型態
外文關鍵詞: crystalline morphology, miscibility, blend, aliphatic polyesters, poly( vinyl acetate )
相關次數: 點閱:111下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究利用微分掃描熱卡計(DSC)、偏光顯微鏡(PLM)、掃描式電子顯微鏡(SEM)、廣角X光繞射儀(WAXS)探討poly(vinyl acetate)(PVAc)與一系列直鏈脂肪族聚酯類高分子摻合系統之相容性及球晶型態的變化,其中聚酯類高分子包括poly(ethylene succinate)(PES,CH2/COO=2)、poly(ethylene adipate)(PEA,CH2/COO=3)、poly(1,3-propylene adipate) (PPA,CH2/COO=3.5)、poly(1,4-butylene adipate) (PBA,CH2/COO=4)、poly(ethylene azelate)(PEAz,CH2/COO=4.5)、poly(1,6-hexamethylene adipate)(PHA,CH2/COO=5)、poly(1,6-hexamethylene sebacate)(PHS,CH2/COO=7)。此系列中CH2/COO=3~4的摻合系統,會呈現出單一玻璃轉移溫度的相容型態。而CH2/COO=2的PVAc/PES系統則為部分相容的型態。

      球晶型態上,PEA、PPA 並未因PVAc的加入,而改變球晶型態,明顯地摻合體的球晶型態和原本PEA及PPA的球晶型態仍舊相同。不過由動力分析仍可知道PVAc的加入,會對PEA和PPA的成核機構造成影響,並降低結晶速率。當PVAc含量達30%時PEA的結晶速率會大幅下降,而PPA結晶速率則在PVAc加入後急速趨緩。PVAc/PBA掺合系統在PVAc含量10%的組成中,動力上具有一個相對較低的結晶速率形成。這一現象的生成使得粗糙度δ參數相對變大,導致了較為粗糙的樹狀球晶形成,此一粗糙的樹狀球晶型態與環狀消光環球晶型態在相互競爭之下,造成了環狀消光環球晶型態的結構破壞,而致使環狀消光環的消失。

     Miscibility and crystalline morphology in blends of poly (vinyl acetate) with a homologous series of aliphatic polyesters were exploring by differential scanning calorimeter(DSC)、polarized-light microscopy(PLM)、scanning electron microscopy(SEM) and Wide-angle X-ray Scattering Diffractometer(WAXS). These aliphatic polyesters includes poly(ethylene succinate)(PES,CH2/COO=2)、poly(ethylene adipate)(PEA,CH2/COO=3)、poly(1,3-propylene adipate) (PPA,CH2/COO=3.5)、poly(1,4-butylene adipate) (PBA,CH2/COO=4)、poly(ethylene azelate)(PEAz,CH2/COO=4.5)、poly(1,6-hexamethylene adipate)(PHA,CH2/COO=5) and poly(1,6-hexamethylene sebacate)(PHS,CH2/COO=7). PVAc is found to be miscible with PEA、PPA and PBA as shown by existence of single composition dependent glass transition temperature over the entire composition. However, blends containing PES exhibited only partial miscibility.

     The experiment’s result show that spherulite morphology of PEA and PPA do not change as blending with PVAc. Obviously, the spherulite morphology of blends are similar to that of neat PEA and PPA. However, the results of kinetic analysis evident that nucleation mechanisms of PEA and PPA should have some variation and their nucleation rates are decreased when blending with PVAc. The nucleation rates of PEA will acutely decrease as the amounts of PVAc up to 30%, but those of PPA reduce just as PVAc adding. Otherwise, in the PVAc/PBA blending composition with 10% PVAc, there is a relative lower nucleation rate of kinetic system. The phenomenon causes that δ parameter of coarseness increase and dendrite spherulites are formed. Among the competition of dendrite spherulites and ring-banded spherulites, the structures of dendrite spherulites are destroyed and then disappeared.

    中文摘要 I 英文摘要 III 誌謝 V 總目錄 VI 表目錄 VIII 圖目錄 IX 第一章 簡介 1 第二章 原理 7 2-1 高分子的相容性 7 2-2 玻璃相轉移行為 8 2-3 結晶動力學理論 12 2-4 樹狀(dendrite)結構晶體成長理論 15 2-5 Keith-Padden Theory of Spherulitic Crystallization 16 第三章 實驗 24 3-1 試藥 23 3-2 樣品製備 29 3-3 實驗儀器 29 第四章 結果與討論 31 4-1 Poly( vinyl acetate )/Aliphatic polyesters摻合系統之無定型區相容性探討 30 4-2 Poly( vinyl acetate )/Aliphatic polyesters摻合系統之結晶區探討 62 4-2-1等溫結晶動力分析 62 4-2-2球晶型態探討 81 第五章 結論 105 參考文獻 106 自述 108

    1. J. J. Ziska, J. W. Barlow, D. R. Paul, Polymer, 22, 918 (1981)
    2. J. E. Harris, S. H. Goh, D. R. Paul, J. W. Barlow, J. Appl. Polym. Sci., 27, 839 (1982)
    3. C. A. Cruz, D. R. Paul, J. W. Barlow, J. Appl. Polym. Sci., 24, 2101 (1979)
    4. A. C. Fernandes, J. W. Barlow, D. R. Paul, J. Adv. Polym. Sci., 29,1971 (1984)
    5. E. M. Woo, J. W. Barlow, D. R. Paul, J. Appl. Polym. Sci., 28, 1347 (1983)
    6. V. S. Shah, J. D. Keitz, D. R. Paul, J. W. Barlow, J. Appl. Polym. Sci., 32, 3863 (1986)
    7. S. M. Low, S. H. Goh, S. Y. Lee, Polymer, 35, 3290 (1994)
    8. M. K. Neo, S. H. Goh, Polymer Network & Blends, 3, 131 (1993)
    9. J. Peng, S. H. Goh, S. Y. Lee, K. S. Siow, Polymer Network & Blends, 5, 19 (1995)
    10. J. J. Jutier, E. Lemieux, R. E. Prud’Homme, J. Polym. Sci.: Polym. Phys., 26, 1313 (1988)
    11. E. M. Woo, C. P. Chiang, Polymer, 45,8415 (2004)
    12. J. P. Penning, R. St. John Manley, Macromolecules, 29, 77 (1996)
    13. J. P. Penning, R. St. John Manley, Macromolecules, 29, 84 (1996)
    14. L.Z. Liu, B. Chu, J. P. Penning, R. St. John Manley, J. Polym. Sci.: Polym. Phys., 38, 2296 (2000)
    15. H. D. Keith, F. J. Padden, Polymer, 25, 28 (1984)
    16. Z. Wang, L. An, B. Jing, X. Wang, H. Zhao, Polymer Journal, 30, 206 (1998)
    17. W. Li, R. Yan, B. Jiang, Polymer, 33, 899 (1992)
    18. Z. Wang, L. An, W. Jiang, B. Jiang, X. Wang, J. Polym. Sci.: Polym. Phys., 37, 2682 (1999)
    19. Z. Wang, X. Wang, D. Yu, B. Jiang, Polymer, 38, 5897 (1997)
    20. B. Serrano, I. F. Pierola, J. Bravo, J. Baselga, J. Mater. Process. Tech., 141, 123 (2003)
    21. G. Qipeng, L. Zhenhai, J. Term. Anal. Calorim., 59, 101 (2000)
    22. A. M. Gajria, V. Dave, R. A. Gross, S. P. McCarthy, Polymer, 37, 437 (1996)
    23. N. K. Kalfoglu, J. Polym. Sci.: Polym. Phys. Ed., 20, 1259 (1982)
    24. P. Greco, E. Martuscelli, Polymer, 30, 1475 (1989)
    25. D. F. Varnell, J. P. Runt, M. M. Coleman, Polymer , 24, 37 (1983)
    26. T. K. Shin, J. Kim, H. J. Choi, M. S. Jhon, J. Appl. Polym. Sci., 77, 1348 (2000)
    27. L. H. Sperling, “Introduction to physical polymer science”, 3th, ed.A John Wiley & Sons, Inc., New York
    28. M. Gordon, J. S. Taylor, J. Appl. Chem., 2, 493 (1952)
    29. A. J. Kovacs, Adv. Polym. Sci., 3, 394 (1963)
    30. M. Aubin, R. E. Prud’homme, Macromolecules, 21, 2945 (1988)
    31. H. L. Chen, Macromolecules, 28, 2845 (1995)
    32. E. G. Lezcano, D. Ramirez de Arellano, M. G. Prolongo, C. Salom Coil, Polymer, 39, 1583 (1998)
    33. M. Avrami, J. Chem. Phys., 9, 177 (1949)
    34. B. Wunderlich, Macromolecular Physics, Vol. 2, Academic Press, New York, 1976
    35. H. D. Keith, F. J. Padden, Jr., J. Appl. Phys., 35, 1286 (1964)
    36. H. D. Keith, F. J. Padden, Jr., J. Appl. Phys., 34, 2409 (1963)
    37. Martuscelli E. In: Martuscelli E, Palumbo R, Kryszewski M, editors. Polymer blends: processing, morphology and properties, vol. 23. Plenum Press: New York, 1979.
    38. B. Wunderlich, Macromolecular Physics, Vol. 1, Academic Press, New York, 1976
    39. Y. Nishio, T. Haratani, T. Takahashi, J. Polym. Sci.: Polym. Phys. Ed., 28, 355 (1990)
    40. Y. H. Kuo, E. M. Woo, T. Y. Kuo, Polym. J., 33, 920 (2001)
    41. G. Braun, A. J. Kovacs, “In Physics of Non-Crystalline Solids”, J. A. Prins, Ed, North-Holland, Amsterdam, 1965
    42. M. Ren, Q. Chen, J. Song, H. Zhang, X. Sun, Z. Mo, H. Zhang, L. Jiang, J. Polym. Sci.: Polym. Phys., 43, 553 (2005)
    43. T. Sasaki, H. Sunago, T. Hoshikawa, Polym. Eng. Sci., 43, 629 (2003)
    44. S. K. Rana, J. Adv. Polym. Sci., 61, 951 (1996)
    45. S. L. Aggarwal, L. Marker, W. L. Kollar, R. Geroch, J. Polym. Sci.:A-2., 4, 715 (1966)
    46. M. C. Tobin, J. Polym. Sci.: Polym. Phys., 12, 399 (1974)
    47. K. Kavindranath, J. P. Jog, J. Adv. Polym. Sci., 49, 1395 (1993)
    48. J. M. Chen, E. M. Woo, J. Adv. Polym. Sci., 57, 877 (1995)

    下載圖示 校內:立即公開
    校外:2005-07-08公開
    QR CODE