| 研究生: |
林佳廷 Lin, Jia-Ting |
|---|---|
| 論文名稱: |
平流層驟暖期間大氣潮汐與行星波驅動電離層之變異 Ionospheric Variability Driven by Atmospheric Tides and Planetary Waves During Sudden Stratospheric Warmings |
| 指導教授: |
林建宏
Lin, Chien-Hung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 平流層驟暖 、電離層變異 、大氣垂直耦合 、潮汐分解 、大氣潮汐行星波 、福衛三號 、福衛七號 、資料同化分析場 、TIE-GCM大氣電離層耦合模式 |
| 外文關鍵詞: | Sudden Stratospheric Warming, Ionospheric Variabilities, Vertical Atmosphere-Ionosphere Coupling, Tidal Decomposition, Atmospheric Tides, Planetary Waves, FORMOSAT-3/COSMIC, FORMOSAT-7/COSMIC-2, Data-assimilation Analysis, TIE-GCM Model |
| 相關次數: | 點閱:139 下載:18 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
位於中低層大氣的大尺度的劇烈天氣事件,特別是發生在冬天極區的平流層驟暖(Sudden Stratospheric Warmings, SSW)事件,是在大氣學界中被廣泛認為研究低層大氣與電離層垂直耦合的絕佳機會,極區平流層SSW事件影響電離層的範圍不僅是在垂直高度上,也包含極區到赤道的緯度範圍延伸,為何極區的SSW影響最劇烈地區的是位於低緯度的電離層?透過觀測與模式研究究竟哪些透過那些物理與化學機制和過程,將地球大氣層的不同區域連結在一起,一直以來是大氣學界之重要課題。早期的研究表明,低緯度電離層對於SSWs所引起的異常相當顯著且持久。在這篇論文中,首先我們對全球電離層分析場(Global Ionospheric Specification, GIS)進行潮汐分解後發現,於2009年SSW事件中,其典型的半日 (12小時) 週期的電離層異常是由太陽和月球半日遷移潮汐 (solar and lunar semi-diurnal migrating tides, SW2與M2) 的疊加作用引起的。造成其半日變化呈現一個大週期振盪 (15天) 是SW2和M2之間拍頻的結果,且M2是造成SSW事件中觀測到的半日變化會隨天數延後現象的主要因子,這表明在SSW事件期間,月球半日遷移潮汐增強所扮演的重要性。
然而SSWs通常只發生在北半球,卻於2019年9月南極地區發生了罕見且增溫幅度創歷史紀錄的SSW,提供了研究南極SSW與電離層耦合提供了絕佳機會,這非常少被探索,因在氣象50年的歷史上,僅發生過三次南極SSW事件。同樣透過分析GIS的結果,我們首次發現於SSW事件中電離層中準六天振盪 (Quasi-6-day Oscillation, Q6DO) 隨時間演化和垂直結構的特徵,是由於SSW改變中氣層和低熱氣層平均風場,達成斜壓不穩定條件產生異常大振幅的準六天波 (Quasi-6-day wave, Q6DW) 所造成的。我們的結果表明,在電離層中觀測到的Q6DO特徵與過去研究的Q6DO氣候特徵在時間和空間上有很大不同,指出由南極SSW驅動之電離層變異的耦合機制復雜,極可能與SW2非線性交互作用產生的次生波有關。
最後,由於過去研究發現在中氣層與低熱氣層中的SW2在SSW事件中在振幅 (兩倍) 與相位 (提前2小時) 上有顯著的改變,故我們利用美國國家大氣研究中心所發展的電離層與大氣耦合模式(NCAR TIE-GCM)模擬,研究其電離層對於模式下邊界條件之SW2大氣潮汐的反應,透過四種不同SW2振幅與相位的組態,探討其對於大氣風場、電離層電漿密度、電動力過程及中性組成影響。其結果指出電離層對於SW2相位的提前,能夠產生符合早上電子密度增加與下午電子密度減少的典型半日變化之SSW電離層效應的特徵,但改變量與觀測有段差距,其機制是透過改變白天E層的電動力過程產生的半天變化的垂直電漿飄移,且達穩定態的時間非常短 (一天)。
另一方面對於增強SW2振幅的模擬實驗結果顯示,僅增強SW2振幅並無法重現典型的SSW電離層效應,而是造成電子密度早上傍晚減少中午增加的現象,且隨模擬時間一長,潮汐消散作用反而造成全面性的電子密度下降。然而當將SW2的振幅增強與相位提前兩者同時改變時,其造成的結果最為符合典型SSW電離層效應,在電漿飄移速度變化的大小也較為接近觀測。除此之外我們也發現在增強SW2振幅的實驗中,白天E層電動力過程對於SW2反應時間尺度起初較快 (數天),與SW2潮汐風振幅達穩定時間尺度一致,而潮汐消散作用對平均風場向西加速的反應達平衡所需的時間較長 (約一周),其較為緩慢變化的平均風場又能繼續透過F層電動力過程反饋至電漿飄移,抵銷部分白天來自E層的貢獻。這些結果使我們更好地了解造成電離層變化的原因,尤其是低層大氣中的大尺度太陽熱力和月球引力所誘發的潮汐以及行星波向上傳播的作用。
Large‐scale meteorological disturbances like sudden stratospheric warmings (SSWs) are often of interest for the investigation of a variety of mechanisms and processes that link different regions of the Earth's atmosphere across a wide range of altitudes and latitudes. Earlier studies have shown large and long‐lasting anomalies caused by SSWs in the Earth's daytime ionosphere. In this study, we show that the typical semi-diurnal (12-hrs) ionospheric responses in connection with SSWs are caused by the combined effect of solar and lunar semi-diurnal migrating tides during the 2009 SSW. The 15-day oscillation of the semi-diurnal variations is indeed a result from the beating between solar and lunar semi-diurnal migrating tides. In addition, our results indicate that the observed semi-diurnal variations in ionosphere that progressed toward later local time during the SSW are primarily attributed to the lunar semi-diurnal migrating tides, suggesting the importance of strong enhancements in the lunar semi-diurnal migrating tide during SSWs. These results improve our understanding of the reasons for day‐to‐day variations in the ionosphere and the role of upward propagation of solar and gravitational lunar induced tides from lower altitudes during large-scale meteorological disturbances.
However, the SSW usually occurs in the northern hemisphere. In September 2019, a rare and record-breaking SSW occurred in the Antarctic region, providing an opportunity to investigate the ionospheric variabilities connected to the Antarctic SSW, which is seldom explored. We present observations of the time evolution and vertical structure of Quasi-6-Day Oscillation (Q6DO) in the ionosphere generated from the unusually large Quasi-6-day Wave (Q6DW) in the mesosphere and lower thermosphere. Our results show that the observed Q6DO behavior in the ionosphere is quite different from climatological characteristics in the local time and vertical structure, which indicates that the coupling mechanisms driving the ionospheric variability are complicated due to the presence of Antarctic SSW. The two child waves produced by the non-linear interaction between the Q6DW and SW2 could be the possible candidates for the abnormal feature.
Finally, we performed TIE-GCM simulations with four different SW2 configurations (in amplitude and phase, respectively) to evaluate their influences on atmospheric wind field, ionospheric plasma density, electrodynamic process, and neutral composition. The results indicate that the ionosphere responds to the electrodynamic process by the tidal variability of SW2 in E-region with a relatively short time scale (three days), while the impact of increasing tidal dissipation on the zonal mean wind takes a longer time scale (about a week), and the slow change in the zonal mean wind field can continue to be fed back to the electrodynamic process through F-region dynamo. Overall, these results enable us to better understand the mechanisms for the changes in the ionosphere, especially the ionospheric responses to the upward propagation of large-scale solar, lunar tides, and planetary waves.
Andrews, D. G., J. R. Holton, and C. B. Leovy (1987), Middle Atmosphere Dynamics, 1st ed., Academic Press, San Diego, Calif.
Baldwin, M. P., Hirooka, T., O'Neill, A., Yoden, S., Charlton, A. J., Hio, Y., et al. (2003). Major stratospheric warming in the Southern Hemisphere in 2002: Dynamical aspects of the ozone hole split, SPARC Newsletter, No. 20 (pp. 24–26). Toronto, ON, Canada: SPARC Office.
Chang, L. C., C.-H. Lin, J. Yue, J.-Y. Liu, and J.-T. Lin (2013a), Stationary planetary wave and nonmigrating tidal signatures in ionospheric wave 3 and wave 4 variations in 2007–2011 FORMOSAT-3/COSMIC observations, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50583.
Chang, L. C., C.-H. Lin, J.-Y. Liu, N. Balan, J. Yue, and J.-T. Lin (2013b), Seasonal and local time variation of ionospheric migrating tides in 2007–2011 FORMOSAT-3/COSMIC and TIE-GCM total electron content, J. Geophys. Res. Space Physics, 118, 2545–2564, doi:10.1002/jgra.50268.
Chapman, S. and R. S. Lindzen (1970). “Atmospheric Tides: Thermal and Gravitational.” In: D. Reidel, Norwell, Mass.
Charlton, A. J. and Polvani, L. M. (2007), A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks, Journal of Climate, 20, 449-469.
Chau, J. L., B. G. Fejer, and L. P. Goncharenko (2009), Quiet variability of equatorial E × B drifts during a sudden stratospheric warming event, Geophys. Res. Lett., 36, L05101, doi:10.1029/2008GL036785.
Chau, J. L., N. A. Aponte, E. Cabassa, M. P. Sulzer, L. P. Goncharenko, and S. A. Gonzlez (2010), Quiet time ionospheric variability over Arecibo during sudden stratospheric warming events, J. Geophys. Res., 115, A00G06, doi:10.1029/2010JA015378.
Chau, J. L., P. Hoffmann, N. M. Pedatella, V. Matthias, and G. Stober (2015), Upper mesospheric lunar tides over middle and high latitudes during sudden stratospheric warming events, J. Geophys. Res. Space Physics, 120, 3084–3096, doi:10.1002/2015JA020998.
England, S.L. A Review of the Effects of Non-migrating Atmospheric Tides on the Earth’s Low-Latitude Ionosphere. Space Sci Rev 168, 211–236 (2012). https://doi.org/10.1007/s11214-011-9842-4
Efron, B. (1981). Nonparametric estimates of standard error: The jackknife, the bootstrap, and other methods. Biometrika, 68(3), 589–59.
Fejer, B. G., M. E. Olson, J. L. Chau, C. Stolle, H. Lühr, L. P. Goncharenko, K. Yumoto, and T. Nagatsuma (2010), Lunar-dependent equatorial ionospheric electrodynamic effects during sudden stratospheric warmings, J. Geophys. Res., 115, A00G03, doi:10.1029/2010JA015273.
Fejer, B. G., B. D. Tracy, M. E. Olson, and J. L. Chau (2011), Enhanced lunar semidiurnal equatorial vertical plasma drifts during sudden stratospheric warmings, Geophys. Res. Lett., 38, L21104, doi:10.1029/2011GL049788.
Fesen, C. G., G. Crowley, R. G. Roble, A. D. Richmond, and B. G. Fejer (2000), Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts, Geophys. Res. Lett., 27(13), 1851–1854, doi:10.1029/2000GL000061.
Eswaraiah, S., Kim, Y. H., Lee, J., Ratnam, M. V., & Rao, S. V. B. (2018). Effect of Southern Hemisphere sudden stratospheric warmings on Antarctica mesospheric tides: First observational study. Journal of Geophysical Research: Space Physics, 123, 2127– 2140. https://doi.org/10.1002/2017JA024839
Forbes, J.M. (1995). Tidal and Planetary Waves. In The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory (eds R.M. Johnson and T.L. Killeen). https://doi.org/10.1029/GM087p0067
Forbes, J. M., S. E. Palo, and X. Zhang (2000). “Variability of the ionosphere.” In: Journal of Atmospheric and Solar-Terrestrial Physics 62.8, pp. 685– 693. doi: 10.1016/S1364-6826(00)00029-8
Forbes, J. M., Russell, J., Miyahara, S., Zhang, X., Palo, S., Mlynczak, M., Mertens, C. J., and Hagan, M. E. (2006), Troposphere‐thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002, J. Geophys. Res., 111, A10S06, doi:10.1029/2005JA011492.
Forbes, J. M., and X. Zhang (2012), Lunar tide amplification during the January 2009 stratosphere warming event: Observations and theory, J. Geophys. Res., 117, A12312, doi:10.1029/2012JA017963
Forbes, J. M., & Zhang, X. (2017). The quasi-6 day wave and its interactions with solar tides. Journal of Geophysical Research: Space Physics, 122 (4), 4764-4776
Fritts, D. C., and Alexander, M. J. (2003), Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys., 41, 1003, doi:10.1029/2001RG000106, 1.
Fuller‐Rowell, T., H. Wang, R. Akmaev, F. Wu, T.‐W. Fang, M. Iredell, and A. Richmond (2011), Forecasting the dynamic and electrodynamic response to the January 2009 sudden stratospheric warming, Geophys. Res. Lett., 38, L13102, doi:10.1029/2011GL047732.
Fuller‐Rowell, T. J., Fang, T. , Wang, H. , Matthias, V. , Hoffmann, P. , Hocke, K. and Studer, S. (2016). Impact of Migrating Tides on Electrodynamics During the January 2009 Sudden Stratospheric Warming. In Ionospheric Space Weather (eds T. Fuller‐Rowell, E. Yizengaw, P. H. Doherty and S. Basu). doi:10.1002/9781118929216.ch14
Gan, Q., W. Wang, J. Yue, H. Liu, L. C. Chang, S. Zhang, A. Burns, and J. Du (2016), Numerical simulation of the 6 day wave effects on the ionosphere: Dynamo modulation, J. Geophys. Res. Space Physics, 121, 10,103–10,116, doi:10.1002/2016JA022907
Gan, Q., J. Oberheide, J. Yue, and W. Wang (2017), Short-term variability in the ionosphere due to the nonlinear interaction between the 6 day wave and migrating tides, J. Geophys. Res. Space Physics, 122, doi:10.1002/2017JA023947
Gan, Q., Oberheide, J., & Pedatella, N.M. (2018). Sources, sinks, and propagation characteristics of the quasi 6-day wave and its impact on the residual mean circulation. Journal of Geophysical Research: Atmospheres, 123, 9152–9170. httsp://doi.org/10.1029/2018JD028553
Gu, S. Y., Ruan, H., Yang, C. Y., Gan, Q., Dou, X., & Wang, N. (2018). The morphology of the 6-day wave in both the neutral atmosphere and F region ionosphere under solar minimum conditions. Journal of Geophysical Research: Space Physics, 123, 4232–4240. httsp://doi. org/10.1029/2018JA025302
Gu, S.-Y., H.-L. Liu, T. Li, X. Dou, Q.Wu, and J. M. Russell III (2014), Observation of the neutral-ion coupling through 6 day planetary wave, J. Geophys. Res. Space Physics, 119, 10,376–10,383, doi:10.1002/ 2014JA020530
Goncharenko, L., and S.-R. Zhang (2008), Ionospheric signatures of sudden stratospheric warming: Ion temperature at middle latitude, Geophys. Res. Lett., 35, L21103, doi:10.1029/2008GL035684.
Goncharenko, L. P., J. L. Chau, H.‐L. Liu, and A. J. Coster (2010), Unexpected connections between the stratosphere and ionosphere, Geophys. Res. Lett., 37, L10101, doi:10.1029/2010GL043125.
Goncharenko, L. P., A. J. Coster, J. L. Chau, and C. E. Valladares (2010), Impact of sudden stratospheric warmings on equatorial ionization anomaly, J. Geophys. Res., 115, A00G07, doi:10.1029/2010JA015400
Goncharenko, L. P., A. J. Coster, R. A. Plumb, and D. I. V. Domeisen (2012), The potential role of stratospheric ozone in the stratosphere-ionosphere coupling during stratospheric warmings, Geophys. Res. Lett., 39, L08101, doi:10.1029/2012GL051261.
Goncharenko, L., Chau, J. L., Condor, P., Coster, A., and Benkevitch, L. (2013), Ionospheric effects of sudden stratospheric warming during moderate‐to‐high solar activity: Case study of January 2013, Geophys. Res. Lett., 40, 4982– 4986, doi:10.1002/grl.50980.
Goncharenko L. P., V. L. Harvey, K. R. Greer, S.-R. Zhang, A. J. Coster (2020), Longitudinally-Dependent Low-Latitude Ionospheric Disturbances Linked to the Antarctic Sudden Stratospheric Warming of September 2019, J. Geophys. Res., doi.org/10.1029/2020JA028199
Hagan, M. E., and J. M. Forbes, , Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 107( D24), 4754, doi:10.1029/2001JD001236, 2002.
Heelis, R. A. (2004), Electrodynamics in the low and middle latitude ionosphere: a tutorial, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 66, Issue 10, July 2004, Pages 825-838, doi:10.1016/j.jastp.2004.01.034
Holton, J.R. and Alexander, M.J. (2000). The Role of Waves in the Transport Circulation of the Middle Atmosphere. In Atmospheric Science Across the Stratopause (eds D.E. Siskind, S.D. Eckermann and M.E. Summers). https://doi.org/10.1029/GM123p0021
Jin, H., Y. Miyoshi, H. Fujiwara, and H. Shinagawa (2008), Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure, J. Geophys. Res., 113, A09307, doi:10.1029/2008JA013301
Jin, H., Y. Miyoshi, D. Pancheva, P. Mukhtarov, H. Fujiwara, and H. Shinagawa (2012), Response of migrating tides to the stratospheric sudden warming in 2009 and their effects on the ionosphere studied by a whole atmosphere-ionosphere model GAIA with COSMIC and TIMED/SABER observations, J. Geophys. Res., 117, A10323, doi:10.1029/2012JA017650.
Kelley, M. C. (2009), The Earth’s Ionosphere Plasma Physics and Electrodynamics, 2nd Edition, International Geophysics, Academic Press, Volume 96, ISBN: 9780120884254
Kil, H., Oh, S.‐J., Kelley, M. C., Paxton, L. J., England, S. L., Talaat, E., Min, K.‐W., and Su, S.‐Y. (2007), Longitudinal structure of the vertical E × B drift and ion density seen from ROCSAT‐1, Geophys. Res. Lett., 34, L14110, doi:10.1029/2007GL030018.
Laskar, F.I., Pallamraju, D. & Veenadhari, B. Vertical coupling of atmospheres: dependence on strength of sudden stratospheric warming and solar activity. Earth Planet Sp 66, 94 (2014). https://doi.org/10.1186/1880-5981-66-94
Lim, E. P., Hendon, H. H., Butler, A. H., Garreaud, R. D., Polichtchouk, I., Shepherd, T. G., et al. (2020). The 2019 Antarctic sudden stratospheric warming. SPARC Newsletter 54 (p. 10)
Lin, C. H., W. Wang, M. E. Hagan, C. C. Hsiao, T. J. Immel, M. L. Hsu, J. Y. Liu, L. J. Paxton, T. W. Fang, and C. H. Liu (2007a), Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Three-dimensional electron density structures, Geophys. Res. Lett., 34, L11112, doi:10.1029/2007GL029265.
Lin, C. H., C. C. Hsiao, J. Y. Liu, and C. H. Liu (2007b), Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure, J. Geophys. Res., 112, A12305, doi:10.1029/2007JA012455.
Lin, C. H., J. T. Lin, L. C. Chang, J. Y. Liu, C. H. Chen, W. H. Chen, H. H. Huang, and C. H. Liu (2012a), Observations of global ionospheric responses to the 2009 stratospheric sudden warming event by FORMOSAT-3/COSMIC, J. Geophys. Res. Space Physics, 117, A06323, doi:10.1029/2011JA017230
Lin, C. H., J. T. Lin, L. C. Chang, W. H. Chen, C. H. Chen and J. Y. Liu (2013), Stratospheric Sudden Warming Effect on the Ionospheric Migrating Tides during 2008-2010 observed by FORMOSAT-3/COSMIC, Journal of Atmospheric and Solar–Terrestrial Physics, 103, Special Issue: SI, 66-75, doi: 10.1016/j.jastp.2013.03.026
Lin, C. Y., Matsuo, T., Liu, J. Y., Lin, C. H., Tsai, H. F., & Araujo‐Pradere, E. A. (2015). Ionospheric assimilation of radio occultation and ground‐based GPS data using non‐stationary background model error covariance. Atmospheric Measurement Techniques, 8(1), 171–182. https://doi.org/10.5194/amt-8-171-2015
Lin, C. Y., Matsuo, T., Liu, J. Y., Lin, C. H., Huba, J. D., Tsai, H. F., & Chen, C. Y. (2017). Data assimilation of ground-based GPS and radio occultation total electron content for global ionospheric specification. Journal of Geophysical Research: Space Physics, 122, 10,876–10,886. https://doi.org/10.1002/2017JA024185
Lin, C. Y., C. H. Lin, J. Y. Liu, P. K. Rajesh, T. Matsuo, M. Y. Chou, H. F. Tsai, W. H. Yeh, and Bodo Reinisch (2020), The Early Results and Validation of FORMOSAT-7/COSMIC-2 Space Weather Products: Global Ionospheric Specification and Ne-Aided Abel Electron Density Profile, Journal of Geophysical Research: Space Physics, https://doi.org/10.1029/2020JA028028
Lin, J. T., C. H. Lin, L. C. Chang, H. H. Huang, J. Y. Liu, A. B. Chen, C. H. Chen, and C. H. Liu (2012), Observational evidence of ionospheric migrating tide modification during the 2009 stratospheric sudden warming, Geophys. Res. Lett., 39, L02101, doi:10.1029/2011GL050248
Lin, J. T., Lin, C. H., Lin, C. Y., Pedatella, N. M., Rajesh, P. K., Matsuo, T., & Liu, J. Y. (2019). Revisiting the modulations of ionospheric solar and lunar migrating tides during the 2009 stratospheric sudden warming by using global ionosphere specification. Space Weather, 17, 767–777. https://doi.org/ 10.1029/2019SW002184
Liu, H. L., Talaat, E., Roble, R., Lieberman, R., Riggin, D., & Yee, J. H. (2004). The 6.5-day wave and its seasonal variability in the middle and upper atmosphere. Journal of Geophysical Research, 109, D21112. httsp://doi.org/10.1029/2004JD004795
Liu, H.-L., W. Wang, A. D. Richmond, and R. G. Roble (2010), Ionospheric variability due to planetary waves and tides for solar minimum conditions, J. Geophys. Res., 115, A00G01, doi:10.1029/2009JA015188.
Liu, H., M. Yamamoto, S. Tulasi Ram, T. Tsugawa, Y. Otsuka, C. Stolle, E. Doornbos, K. Yumoto, and T. Nagatsuma (2011), Equatorial electrodynamics and neutral background in the Asian sector during the 2009 stratospheric sudden warming, J. Geophys. Res., 116, A08308, doi:10.1029/2011JA016607
Liu, H., H. Jin, Y. Miyoshi, H. Fujiwara, and H. Shinagawa (2013), Upper atmosphere response to stratosphere sudden warming: Local time and height dependence simulated by GAIA model, Geophys. Res. Lett., 40, 635–640, doi:10.1002/grl.50146.
Liu, H.-L., and A. D. Richmond (2013), Attribution of ionospheric vertical plasma drift perturbations to large-scale waves and the dependence on solar activity, J. Geophys. Res. Space Physics, 118, 2452–2465, doi:10.1002/jgra.50265.
Matsuda, T. S., Nakamura, T., Ejiri, M. K., Tsutsumi, M., and Shiokawa, K. (2014), New statistical analysis of the horizontal phase velocity distribution of gravity waves observed by airglow imaging, J. Geophys. Res. Atmos., 119, 9707– 9718, doi:10.1002/2014JD021543.
Matsuno, T. (1971). A dynamical model of the stratospheric sudden warming. Journal of the Atmospheric Sciences, 28(8), 1479–1494
Maute, A., A. D. Richmond, and R. G. Roble (2012), Sources of low-latitude ionospheric E x B drifts and their variability, J. Geophys. Res., 117, A06312, doi:10.1029/2011JA017502.
Maute, A., B. G. Fejer, J. M. Forbes, X. Zhang, and V. Yudin (2016), Equatorial vertical drift modulation by the lunar and solar semidiurnal tides during the 2013 sudden stratospheric warming, J. Geophys. Res. Space Physics, 121, 1658–1668, doi:10.1002/2015JA022056.
McInturff, R. M. (1978). Stratospheric warmings: Synoptic, dynamic and general-circulation aspects. Ref. Publ. 1017, Suitland,Md., NASA, available online at https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780010687.pdf
Miyoshi, Y., & Yamazaki, Y. (2020). Excitation mechanism of ionospheric 6‐day oscillation during the 2019 September sudden stratospheric warming event. Journal of Geophysical Research: Space Physics, 125, e2020JA028283. https://doi.org/10.1029/2020JA028283
Mo, X. H., Zhang, D. H., Goncharenko, L. P., Hao, Y. Q., & Xiao, Z. (2014). Quasi-16-day periodic meridional movement of the equatorial ionization anomaly. Annales Geophysicae, 32, 121–131, https://doi.org/10.5194/angeo-32-121-2014.
Oberheide, J., Hagan, M. E., Richmond, A. D., & Forbes, J. M. (2015). Atmospheric tides. In J. Pyle & F. Zhang (Eds.), Encyclopedia of atmospheric sciences (Vol. 2, pp. 287– 297).
Pancheva, D., and P. Mukhtarov (2011), Stratospheric warmings: The atmosphere-ionosphere coupling paradigm, J. Atmos. Sol. Terr. Phys., 73(13), 1697–1702
Patra, A. K., P. Pavan Chaitanya, S. Sripathi, & S. Alex (2014). Ionospheric variability over Indian low latitude linked with the 2009 sudden stratospheric warming. Journal of Geophysical Research: Space Physics, 119, 4044–4061, doi:10.1002/2014JA019847
Pedatella, N. M., and J. M. Forbes (2010a), Global structure of the lunar tide in ionospheric total electron content, Geophys. Res. Lett., 37, L06103, doi:10.1029/2010GL042781.
Pedatella, N. M., and Forbes, J. M. (2010b), Evidence for stratosphere sudden warming‐ionosphere coupling due to vertically propagating tides, Geophys. Res. Lett., 37, L11104, doi:10.1029/2010GL043560.
Pedatella, N. M., H.-L. Liu, A. D. Richmond, A. Maute, and T.-W. Fang (2012), Simulations of solar and lunar tidal variability in the mesosphere and lower thermosphere during sudden stratosphere warmings and their influence on the low-latitude ionosphere, J. Geophys. Res., 117, A08326, doi:10.1029/2012JA017858.
Pedatella, N. M., & Liu, H.‐L. (2013), The influence of atmospheric tide and planetary wave variability during sudden stratosphere warmings on the low latitude ionosphere. Journal of Geophysical Research: Space Physics, 118, 5333–5347. https://doi.org/10.1002/jgra.50492
Pedatella, N. M., et al. (2014), The neutral dynamics during the 2009 sudden stratosphere warming simulated by different whole atmosphere models, J. Geophys. Res. Space Physics, 119, 1306–1324, doi:10.1002/2013JA019421.
Pedatella, N. M., H.-L. Liu, F. Sassi, J.Lei, J. L. Chau, and X. Zhang (2014), Ionosphere variability during the 2009SSW: Influence of the lunar semidiurnal tide and mechanisms producing electron density variability, J. Geophys.Res. Space Physics, 119, 3828–3843,doi:10.1002/2014JA019849
Pedatella, N. M., and Maute, A. (2015), Impact of the semidiurnal lunar tide on the midlatitude thermospheric wind and ionosphere during sudden stratosphere warmings, J. Geophys. Res. Space Physics, 120, 10,740– 10,753, doi:10.1002/2015JA021986.
Pedatella, N. M., J. Oberheide, E. K. Sutton, H.-L. Liu, J. L. Anderson, and K. Raeder (2016), Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere, J. Geophys. Res. Space Physics, 121, 3621–3633, doi:10.1002/2016JA022528.
Pedatella, N. M., T.-W. Fang, H. Jin, F. Sassi, H. Schmidt, J. L. Chau, T. A. Siddiqui, and L. Goncharenko (2016), Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming, J. Geophys. Res. Space Physics, 121, 7204–7225, doi:10.1002/2016JA022859
Pfaff, R.F. The Near-Earth Plasma Environment. Space Sci Rev 168, 23–112 (2012). https://doi.org/10.1007/s11214-012-9872-6
Thuillier G., J.W. King, A.J. Slater, An explanation of the longitudinal variation of the O1D (630 nm) tropical nightglow intensity. J. Atmos. Terr. Phys. 38, 155–158 (1976)
Ren, Z., Wan, W., Liu, L., and Xiong, J. (2009), Intra‐annual variation of wave number 4 structure of vertical E × B drifts in the equatorial ionosphere seen from ROCSAT‐1, J. Geophys. Res., 114, A05308, doi:10.1029/2009JA014060.
Richmond, A.D. Modeling the ionosphere wind dynamo: A review. PAGEOPH 131, 413–435 (1989). https://doi.org/10.1007/BF00876837
Richmond, A. D., E. C. Ridley, and R. G. Roble (1992), A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19(6), 601–604, doi:10.1029/92GL00401.
Richards, P. G. (2011), Reexamination of ionospheric photochemistry, J. Geophys. Res., 116, A08307, doi:10.1029/2011JA016613.
Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Dickinson (1988), A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15(12), 1325–1328, doi:10.1029/GL015i012p01325.
Salby, M. L. (1981). Rossby normal modes in nonuniform background configurations. Part II. Equinox and solstice conditions. Journal of the Atmospheric Sciences, 38(9), 1827–1840. https://doi.org/10.1175/1520‐0469(1981)038<1827:RNMINB>2.0.CO;2
Salby, M. L. (1984). Survey of planetary-scale traveling waves: The state of theory and observations. Reviews of Geophysics, 22(2), 209–236.
Siddiqui, T. A., A. Maute, N. M. Pedatella, Y, Yamazaki, H. Lühr, and C. Stolle (2018), On the variability of the semidiurnal solar and lunar tides of the equatorial electrojet during sudden stratospheric warmings, Annales Geophysicae, Vol. 36. No. 6. Copernicus GmbH, 2018.
Smith A.K. and J. Perlwitz (2015). Planetary waves. In J. Pyle & F. Zhang (Eds.), Encyclopedia of atmospheric sciences (Vol. 4, pp. 1-11).
Solomon, S. C., and R. G. Roble (2015), Thermosphere. In J. Pyle & F. Zhang (Eds.), Encyclopedia of atmospheric sciences (Vol. 5, pp. 402–408).
Stolle, C., Manoj, C., Lühr, H., Maus, S., & Alken, P. (2008). Estimating the daytime equatorial ionization anomaly strength from electric field proxies. Journal of Geophysical Research, 113, A09310. httsp://doi.org/10.1029/2007JA012781
Venkatesh, K., Fagundes, P., Prasad, D. V., Denardini, C. M., De Abreu, A., De Jesus, R., & Gende, M. (2015). Day-to-day variability of equatorial electrojet and its role on the day-to-day characteristics of the equatorial ionization anomaly over the Indian and Brazilian sectors. Journal of Geophysical Research: Space Physics, 120, 9117–9131. httsp://doi.org/10.1002/2015JA021307
Vineeth, C., T. Kumar Pant, and R. Sridharan (2009), Equatorial counter electrojets and polar stratospheric sudden warmings - a classical example of high latitude-low latitude coupling?, Annales geophysicae: atmospheres, hydrospheres and space sciences, Vol. 27. No. 8. 2009
Wang, H., R. A. Akmaev, T.-W. Fang, T. J. Fuller-Rowell, F. Wu, N. Maruyama, and M. D. Iredell (2014), First forecast of a sudden stratospheric warming with a coupled whole-atmosphere/ionosphere model IDEA, J. Geophys. Res. Space Physics, 119, 2079-2089, doi:10.1002/2013JA019481.
Yamazaki, Y., K. Yumoto, D. J. McNamara, T. Hirooka, T. Uozumi, K. Kitamura, S. Abe, and A. Ikeda (2012), Ionospheric current system during sudden stratospheric warming events, J. Geophys. Res., 117, A03334, doi:10.1029/2011JA017453
Yamazaki, Y., and A. D. Richmond (2013), A theory of ionospheric response to upward-propagating tides: Electrodynamic effects and tidal mixing effects, J. Geophys. Res. Space Physics, 118, 5891–5905, doi:10.1002/jgra.50487.
Yamazaki, Y. (2014), Solar and lunar ionospheric electrodynamic effects during stratospheric sudden warmings, Journal of Atmospheric and Solar-Terrestrial Physics, 119(2014)138–146, http://dx.doi.org/10.1016/j.jastp.2014.08.001
Yamazaki, Y., A. D. Richmond, and K. Yumoto (2012b), Stratospheric warmings and the geomagnetic lunar tide: 1958–2007, J. Geophys. Res., 117, A04301, doi:10.1029/2012JA017514.
Yamazaki, Y. (2018). Quasi-6-day wave effects on the equatorial ionization anomaly over a solar cycle. Journal of Geophysical Research: Space Physics, 123, 9881–9892. https://doi.org/10.1029/2018JA026014
Yamazaki, Y., & Matthias, V. (2019). Large‐amplitude quasi‐10‐day waves in the middle atmosphere during final warmings. Journal of Geophysical Research: Atmospheres, 124, 9874–9892. https://doi.org/10.1029/2019JD030634
Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T., Kervalishvili, G., et al. (2020), September 2019 Antarctic sudden stratospheric warming: Quasi-6-day wave burst and ionospheric effects. Geophys. Res. Lett.Geophysical Research Letters, 47, e2019GL086577. https://doi.org/10.1029/2019GL086577
Yue, J., W. Wang, A. D. Richmond, and H.-L. Liu (2012), Quasi-two-day wave coupling of the mesosphere and lower thermosphere-ionosphere in the TIME-GCM: Two-day oscillations in the ionosphere, J. Geophys. Res., 117, A07305, doi:10.1029/2012JA017815
Zhang, X., J. M. Forbes, M. E. Hagan, J. M. Russell III, S. E. Palo, C. J. Mertens, and M. G. Mlynczak (2006), Monthly tidal temperatures 20–120 km from TIMED/SABER, J. Geophys. Res., 111, A10S08, doi:10.1029/2005JA011504.
Zhang, Y., England, S., and Paxton, L. J. (2010), Thermospheric composition variations due to nonmigrating tides and their effect on ionosphere, Geophys. Res. Lett., 37, L17103, doi:10.1029/2010GL044313.
Global Modeling and Assimilation Office (GMAO) (2015), MERRA-2 inst6_3d_ana_Np: 3d,6-Hourly,Instantaneous,Pressure-Level,Analysis,Analyzed Meteorological Fields V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [from 2019-08-01 to 2019-12-31], 10.5067/A7S6XP56VZWS