簡易檢索 / 詳目顯示

研究生: 宋欣財
Sung, Sing-Trai
論文名稱: 專案排程趕工決策模式
A Decision Model of Project Schedule Acceleration
指導教授: 馮重偉
Feng, Chung-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 148
中文關鍵詞: 基因演算法灰預測模糊理論時間成本權衡分析
外文關鍵詞: Time-cost trade-off analysis, Grey prediction, Genetic Algorithms, Fuzzy set theory
相關次數: 點閱:71下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 營建工程專案的執行過程存在有許多無法預期且不可
    避免的不確定性因素,使專案常有進度落後而需趕工之現
    象。此外,專案亦可能為因應特殊之目的而需將排程壓縮
    並進行趕工。上述兩種情形,均將使專案管理人員面對趕
    工方案的決策問題。
    然而,以往關於專案排程趕工問題的研究,大多將作
    業之工期或成本視為確定值進行時間成本權衡分析,且多
    僅以求解位於最佳時間成本權衡曲線上的最佳解為目的,
    乃缺乏趕工方案的決策機制。
    本研究旨在建立標準化之專案排程趕工決策模式,包
    含有:(1)灰預測專案進度、(2)模糊專案排程、(3)模糊時
    間與模糊成本權衡、(4)最適趕工方案決策等四個子模式。
    首先,藉由灰預測專案進度趨勢之結果,用以確認專案是
    否有進行趕工之必要。若專案需進行趕工,則將作業之工
    期與成本均視為模糊值進行模糊專案排程,並運用α截集
    將模糊專案排程結果量化為明確區間值,從而結合基因演
    算法進行模糊時間與模糊成本權衡分析,求解位於最佳時
    間成本權衡曲線上的最佳趕工方案集合。最後,在可符合
    完工時間限制的最佳趕工方案中,搜尋可滿足總成本可能
    為最低與總成本變異區間為最小等兩個目標的方案,作為
    完工時間限制下的最適趕工方案。本研究亦根據所建立之
    模式,開發一專案排程趕工決策系統(Project Schedule
    Acceleration Optimizer, PSAO)。
    經由案例之應用與驗證結果顯示:(1)利用灰預測方法
    進行專案進度趨勢之短期預測具適用性與不錯之準確率。
    (2)根據決策者持有之風險態度,PSAO可在合理的演算時間
    內正確地求解各最佳趕工方案之總工期與總成本變異間,
    並輸出完工時間限制下的最適趕工方案決策結果。因此,
    藉由本研究提出之模式與PSAO應用系統,確可將專案所在
    環境之不確定性風險納入考量,從而完成完工時間限制下
    的最適趕工方案決策。

    The environment of the construction project is
    usually filled with uncertainties. Consequently
    accelerating the project schedule became the common
    and important issue for the project manager to meet
    client's demand in time. There are two main reasons
    for compressing the project schedule. One is the
    schedule delay that may result from executing
    project activities, such as misestimating the
    activity duration. The other is the specific
    purpose for early completing the project, such as
    completing a shopping mall for entering the market
    earlier in the competitive department business.
    The project schedule accelerating process can
    be transferred to the typical time-cost trade-off
    analysis since minimizing time and cost are both
    preferred by the project manager. However, the
    traditional time-cost tradeoff problem assumes the
    time and cost of the activity are deterministic. In
    addition, previous research mainly focuses on
    finding the optimal or near-optimal solutions along
    the time-cost trade-off curve; no decision-making
    mechanism has been proposed to decide the best
    strategies in terms of accelerating the project
    schedule. Therefore, it is necessary to develop a
    decision model that can determine if accelerating
    project schedule is needed and then decides best
    strategies for achieving it under uncertainties.
    This research presents a model that combines
    grey prediction method, fuzzy set theory, and
    genetic algorithms to solve the problem of deciding
    the best strategies in accelerating the project
    schedule under uncertainty. At first the grey
    prediction method is used to forecast the project
    progress and decide that whether the project
    schedule needs to be accelerated or not. Next, if
    the project schedule needs to be accelerated, the
    fuzzy set theory is applied to model the activity
    duration and cost. Furthermore, the α-cut is
    employed to transfer the fuzzy project duration and
    direct cost into crisp values according to decision
    maker's risk attitude. Finally, genetic algorithms
    are adopted to solve the fuzzy time-cost trade-off
    problem to find best strategies which not only
    minimize the project cost but also minimize the
    variance in project cost under the time limit.
    Results showed that this new project schedule
    accelerating model can provide more realistic
    solutions for the construction time-cost trade-off
    problem based on the different risk attitudes
    of the decision maker. In addition, a user-friendly
    program is built to provide a practical tool for
    construction managers.

    摘要............................................I Abstract........................................II 誌謝............................................III 目錄............................................V 圖目錄..........................................X 表目錄..........................................XIV 符號表..........................................XV 第一章 緒論....................................1 1.1 研究動機..................................1 1.2 研究目的..................................2 1.3 研究範圍..................................3 1.4 研究方法與流程............................4 1.5 研究內容與架構............................5 第二章 研究問題陳述與相關文獻回顧..............7 2.1 研究問題陳述..............................7 2.2 專案排程進度管控與預測技術................10 2.3 專案排程之時間成本權衡問題................12 2.3.1 確定性排程之時間成本權衡問題求解方法...12 2.3.1.1 啟發式解法..........................12 2.3.1.2 數學規劃解法........................13 2.3.1.3 人工智慧............................14 2.3.2 不確定性排程之時間成本權衡問題求解方法.15 2.3.2.1 機率型解法..........................16 2.3.2.2 模糊型解法..........................18 2.4 小結......................................19 第三章 模式求解工具與相關理論簡介..............22 3.1 灰色系統理論..............................22 3.1.1 灰預測簡介.............................23 3.1.2 灰預測之應用概況.......................24 3.1.3 數列灰預測基本理論.....................25 3.1.4 數列灰預測之誤差分析...................27 3.1.5 數列灰預測之滾動檢驗...................27 3.2 模糊理論..................................29 3.2.1 模糊集與其運算.........................29 3.2.2 模糊數.................................30 3.2.3 模糊關係與模糊推論.....................32 3.2.4 模糊運算...............................35 3.2.5 α截集.................................35 3.2.6 模糊數排序.............................37 3.3 基因演算法................................39 3.3.1 基因演算法運作流程.....................39 3.3.2 編碼...................................41 3.3.3 建立適存值函數與計算適存值.............41 3.3.4 初始母體...............................42 3.3.5 演化機制...............................42 3.3.6 基因演算法之特色.......................45 3.4 小結......................................46 第四章 專案排程趕工決策模式之建立..............47 4.1 假設條件..................................47 4.2 灰預測專案進度子模式......................48 4.2.1 專案進度指標之定義.....................48 4.2.2 專案進度之控制與規劃...................50 4.2.3 專案進度之延遲預警.....................50 4.2.4 灰預測專案進度.........................51 4.2.5 灰預測專案進度子模式應用流程...........53 4.3 模糊專案排程子模式........................54 4.3.1 作業之不確定性描述.....................54 4.3.1.1 作業之模糊工期......................54 4.3.1.2 作業之模糊成本......................55 4.3.1.3 作業選項之模糊工期與模糊成本關係....56 4.3.2 模糊專案排程之計算.....................58 4.3.2.1 要徑法簡介..........................58 4.3.2.2 專案之模糊總工期....................59 4.3.2.3 專案之模糊總直接成本................62 4.3.2.4 模糊專案排程之結果分析..............62 4.3.3 模糊專案排程結果與α截集之關係.........63 4.3.4 模糊專案排程子模式應用流程.............66 4.4 模糊時間與模糊成本權衡子模式..............66 4.4.1 α值之設定.............................67 4.4.2 專案之模糊總工期與模糊總直接成本代表值.67 4.4.3 目標方程式與限制式.....................68 4.4.4 染色體結構之設計.......................69 4.4.5 初始母體之產生.........................69 4.4.6 適存值函數與適存值.....................70 4.4.6.1 多目標最佳化方法....................70 4.4.6.2 適存值函數之建構與適存值之計算......71 4.4.7 演化機制...............................74 4.4.7.1 選擇與複製..........................74 4.4.7.2 交配................................76 4.4.7.3 突變................................77 4.4.8 演化終止條件...........................78 4.4.9 最佳解之意義...........................78 4.4.10 模糊時間與模糊成本權衡子模式應用流程..79 4.5 最適趕工方案決策子模式....................80 4.5.1 各最佳趕工方案之總成本.................80 4.5.2 各最佳趕工方案與完工時間限制之關係.....83 4.5.3 完工時間限制下的最適趕工方案決策機制...84 4.5.4 最適趕工方案決策子模式應用流程.........85 4.6 專案排程趕工決策模式架構與流程............86 第五章 模式應用說明與驗證......................88 5.1 模式求解簡介..............................88 5.2 案例應用..................................89 5.2.1 趕工需求確認之案例說明.................90 5.2.2 趕工需求確認之案例結果討論.............91 5.2.3 完工時間限制下最適趕工方案求解案例說明.92 5.2.4 完工時間限制下最適趕工方案求解結果討論.93 5.3 模式驗證..................................101 5.3.1 專案進度之預測方法比較.................102 5.3.2 時間成本權衡分析之方法比較.............103 5.4 基因演算法參數之敏感度分析................105 5.5 小結......................................108 第六章 結論與建議..............................109 6.1 結論......................................109 6.2 未來研究方向與建議........................110 參考文獻........................................112 附錄A 案例相關資料.............................119 附錄B 專案排程趕工決策系統使用者手冊...........130

    1. AbouRizk, S. M., and Wales, R. J. (1997). “Combined discrete-event/continuous
    simulation for project planning.” J. Constr. Engrg. and Mgmt., ASCE, 123(1),
    11-20.

    2. Ahuja, H. N., and Nandakumar, V. (1985). “Simulation model to forecast
    project completion time.” J. Constr. Engrg. and Mgmt., ASCE, 111(4), 325-342.

    3. An, S., Yan, J., and Yu, X. (1996). “Grey-system studies on agricultural
    ecoengineering in the Taihu Lake area, Jiangsu, China.” Ecological
    Engineering., 7, 235-245.

    4. Ang, A. (1975). “Analysis of activity network under uncertainly.” J. of
    Engrg. Mech., ASCE, 101(4), 373-387.

    5. Arikan, F., and Gungor, Z. (2001). “An application of fuzzy goal programming
    to a multiobjective project network problem.” Fuzzy sets and Sys., 119,49-58.

    6. Ayyub, B. M., and Halder, A. (1984). “Project scheduling using fuzzy set
    concepts.” J. Constr. Engrg. and Mgmt., ASCE, 110(2), 189-203.

    7. Bandemer, H., and Nather, W. (1992). Fuzzy data analysis. Kluwer Academic
    Publishers, Dordrecht.

    8. Barraza, G. A., Back, W. E., and Mata, F. (2000). “Probalistic monitoring of
    project performance using SS-curves.” J. Constr. Engrg. And Mgmt., ASCE,
    126(2), 142-148.

    9. Burns, S. A., Liu, L., and Feng, C.W. (1996). “The LP/IP hybrid method for
    construction time-cost trade-off analysis.” Constr. Mgmt. and Economics, 14,
    265-276.

    10. Carr, R. I. (1979). “Simulation of construction project duration.” J.
    Constr. Div., ASCE, 105(2), 415-423.

    11. Chanas, S., and Kamburowski, J. (1981). “The use of fuzzy variables in
    PERT.” Fuzzy sets and Sys., 5, 11-19.

    12. Chang, A. S. T. (2001). “Defining cost/schedule performance indices and
    their ranges for design projects.” J. Mgmt. in Engrg., ASCE, 17(2), 122-130.

    13. Chehayeb, N. N., and AbouRizk, S. M. (1998). “Simulation-based scheduling
    with continuous activity relationships.” J. Constr. Engrg. and Mgmt., ASCE,
    124(2), 107-115.

    14. Chen, S. J., and Hwang, C. L. (1992). Fuzzy multiple attribute decision
    making, New York:Springer-Verlag Press.

    15. Chen, S. M., and Chang, T. H. (2001). “Finding multiple possible critical
    paths using Fuzzy PERT.” IEEE Trans. on Sys., Man, and Cyb. Part B, 31(6),
    930-937.

    16. Construction Industry Institute (CII). (1988). Project control for
    engineering, Publ. No. 6-1, Bureau of Engineering Research, University of
    Texas at Austin, Austin, Tex.

    17. Coskunoglu, O. (1984). “Optimal probabilistic compression of PERT
    networks.” J. Constr. Engrg. and Mgmt., ASCE, 110(4), 437-446.

    18. Crandall, K. C. (1976). “Probabilistic time scheduling.” J. Constr. Div.,
    ASCE, 102(3), 415-423.

    19. De, P., Dunne, E. J., and Wells, C. E. (1995). “The discrete time-cost
    tradeoff problem revisited.” Eur. J. Operational Res., 81, 225-238.

    20. Diaz, C. F., and Hadipriono, F. C. (1993). “Nondeterministic networking
    methods.” J. Constr. Engrg. and Mgmt., ASCE, 119(1), 40-57.

    21. Feng, C. W., Liu, L., and Burns, S. A. (1997). ‘‘Using genetic algorithms
    to solve construction time-cost trade-off problems.’’ J. Comp. Civ. Engrg.,
    ASCE, 11(3), 184–189.

    22. Feng, C. W., Liu, L., and Burns, S. A. (2000). “Stochastic construction
    time-cost trade-off analysis.” J. Comp. Civ. Engrg., ASCE, 14(2), 117-126.

    23. Gen, M., and Cheng, R. (1997). Genetic algorithms and engineering design., A
    Wiley-Interscience Publication, New York.

    24. Goldberg, D. E. (1989). Genetic algorithms in search, optimization & machine
    learning, Addison-Wesley Publishing Co., Reading, Mass.

    25. Harris, R. B. (1978). Precedence and arrow networking techniques for
    construction. John Wiley & Sons, Inc., New York, N. Y.

    26. Holland, J. H. (1975), Adaptation in natural and artificial systems, Univ. of
    Michigan Press, Ann Arbor, Mich.

    27. Isidore, L. J. (1999). “Integrated range estimating and probabilistic
    scheduling of construction project.” PhD dissertation, Dept. of Civil
    Engineering, Texas A&M University, College Station, Tex.

    28. Isidore, L. J., and Back, W. E. (2001). “Probabilistic optimal-cost
    scheduling.” J. Constr. Engrg. and Mgmt., ASCE, 127(6), 431-437.

    29. Jian, H., Wakamatsu, H. and Feng, G. J. (1991). “Snowfall prediction based
    on grey system theory.” The Journal of Grey System, 3(2). 121-132.

    30. Kaufmann, A., and Gupta, M. M. (1985). Introduction to fuzzy arithmetic -
    theory and applications. Van Nostrand Reinhold Company Inc., New York.

    31. Kelly, J. E., Jr. (1961). “Critical path planning and scheduling:
    mathematical basis.” Operations Res., 9(3), 167-179.

    32. Kerridge, A. E. (1986). “Predict project results with trending method.”
    Engineering and Construction Project Management, A. E. Kerridge and C. H.
    Verralin, eds., Gulf Publishing Co., Houston.

    33. Klir, G. J., and Yuan, B. (1995). Fuzzy sets and fuzzy logic-theory and
    applications. Prentice-Hall, Englewood Cliffs, N.J.

    34. Laslo, Z. (2003). “Activity time–cost tradeoffs under time and cost chance
    constraints.” Computers & Ind. Engrg. 44, 365-384.

    35. Lee, E. S. and Li, R. J. (1988). “Comparison of fuzzy numbers based on the
    probability measure of fuzzy events.” Computers and Mathematics with
    Applications, 15, 887-896.

    36. Leu, S. S., and Yang, C. H. (1999). “GA-Based multicriteria optimal model
    for construction scheduling.” J. Constr. Engrg. and Mgmt., ASCE, 125(6),
    420-427.

    37. Leu, S. S., Chen, A. T., and Yang, C. H. (1999). “Fuzzy optimal model for
    resource-constrained construction scheduling.” J. Comp. Civ. Engrg., ASCE,
    13(3), 207-216.

    38. Leu, S. S., Chen, A. T., and Yang, C. H. (2001). “A GA-based fuzzy optimal
    model for construction time-cost trade-off.” Int. J. Project Mgmt., 19,
    47-58.

    39. Li, H., and Love, P. E. D. (1997). “Using improved genetic algorithms to
    facilitate time-cost optimization.” J. Constr. Engrg. and Mgmt., ASCE,
    123(3), 233-237.

    40. Li, H., Cao, J. N., and Love, P. E. D. (1999). “Using machine learning and
    GA to solve time-cost trade-off problems.” J. Constr. Engrg. and Mgmt.,
    ASCE, 125(5), 347-353.

    41. Lin, M. (1989). “An application of the GM(1,1) Model : the prediction of
    flight safety.” The Journal of Grey System, 1(1).

    42. Liu, L., Burns, S. A., and Feng, C. W. (1995). ”Construction time-cost
    trade-off analysis using LP/IP hybrid method.” J. Constr. Engrg. And Mgmt.,
    ASCE, 121(4), 446-454.

    43. Liu, S. T. (2003). “Fuzzy activity times in critical path and project
    crashing problems.” Cyb. and Sys., 34, 161-172.

    44. Lorterpong, P. and Moselhi, O. (1996). “Project-network analysis using fuzzy
    sets theory.” J. Constr. Engrg. and Mgmt., ASCE, 122(4), 308-318.

    45. Meyer, W. L., and Shaffer, L.R. (1963). ”Extensions of the critical path
    method through the application of integer programming.” Civ. Engrg. Constr.
    Res. Ser. 2, University of Illinois, Urbana.

    46. Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution
    Programs. 3rd edition. Springer, New York.

    47. Mon, D. L., Cheng, C. H., and Lu, H. C. (1995). “Application of fuzzy
    distributions on project management.” Fuzzy sets and Sys., 73, 227-234.

    48. Moselhi, O. (1993). “Schedule compression using the direct stiffness
    method.” Can. J. Civ. Engrg., 20, 65-72.

    49. Nasution, S. H. (1994). “Fuzzy critical path method.” IEEE Trans. on Sys.,
    Man, and Cyb., 24(1), 48-57.

    50. Perera, S. (1980). “Linear programming solution to network compression.” J.
    Constr. Div., ASCE, 106(3), 315-326.

    51. Que, Bryan, C. (2002). “Incorporating Practicability into Genetic
    Algorithm-Based Time-Cost Optimization.” J. Constr. Engrg. and Mgmt., ASCE,
    128(2), 139-143.

    52. Seiler, J. R. (1983). “Cost and schedule data analysis and forecasting,”
    Project Management Institute Seminar/Symposium, Houston,Texas, October,17-19.

    53. Siemens, N. (1971). “A simple CPM time-cost tradeoff algorithm.” Mgmt.Sci.,
    17(6), B-354-363.

    54. Ward, S. A. and Lithfield, T. (1980). Cost control in design and
    construction. McGraw-Hill, New York.

    55. Woolery, J. C., and Crandall, K. C. (1983). “Stochastic network model for
    planning scheduling.” J. Constr. Engrg. and Mgmt., ASCE, 109(3), 342-354.

    56. Wu, J. H., and Lau, C. R. (1998). “A study to improve GM(1,1) via heuristic
    method.” The Journal of Grey System.

    57. Yager, R. R. (1981). “A procedure for ordering fuzzy subsets of the unit
    interval.” Information science, 24, 143-161.

    58. Yao, J. S., and Lin, F. T. (2000). “Fuzzy critical path method based on
    signed distance ranking of fuzzy numbers.” IEEE Trans. on Sys., Man, and
    Cyb. Part A, 30(1), 76-82.

    59. Yau, C., and Ritchie, E. (1990). “Project compression: A method for speeding
    up resource constrained projects which preserve the activity schedule.” Eur.
    J. Operational Res., 49(1), 140-152.

    60. Yoon, K. P. (1996). “A probabilistic approach to rank complex fuzzy
    numbers” Fuzzy sets and Sys., 80, 167-176.

    61. Zadeh, L. A. (1965). “Fuzzy sets.” Information Control, 8, 338-353.

    62. 安信誠二 (1991),Fuzzy工學,昭晃堂,東京。

    63. 陸海文,模糊數排序法之探討,國立成功大學工業管理科學系博士論文,民國90年。

    64. 黃价成,時程管理體系整合做法,國立成功大學土木工程學系碩士論文,民國89年。

    65. 溫坤禮、黃宜豐、陳繁雄、李元秉、連志峰、賴家瑞 (2002),灰預測原理與應用,全華
    科技圖書股份有限公司,台北。

    66. 廖彬超,以時間序列分析建構工程進度管控模式之研究,國立台灣大學土木工程學研究
    所營建管理組碩士論文,民國90年。

    67. 鄧聚龍、郭洪 (1996),灰色原理與應用,全華科技圖書股份有限公司公司,台北。

    68. 賴瓊華,完工時間限制下模糊計畫評核術之研究,國立成功大學工業管理科學系碩士論
    文,民國90年。

    下載圖示 校內:立即公開
    校外:2003-07-10公開
    QR CODE