| 研究生: |
李俊佑 Li, Chun-Yu |
|---|---|
| 論文名稱: |
鍵結賀癌平之奈米粒子的製備及其熱治療之應用 Preparation of Herceptin-conjugated nanoparticle and their application for hyperthermia therapy |
| 指導教授: |
蕭世裕
Shaw, Shyh-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 賀癌平 、四氧化三鐵 、熱治療 、高週波 |
| 外文關鍵詞: | Herceptin, SPIO, Hyperthermia, High-frequency AC magnetic field |
| 相關次數: | 點閱:106 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化鐵超順磁奈米粒子於高頻交流磁場下,因磁滯損耗產生的熱能可運用於腫瘤的高溫熱治療,然而磁性奈米粒子對於腫瘤組織並無特異性,無法辨認目標會傷及周圍正常的組織,使得磁性奈米粒子熱治療的運用受到限制。單株抗體賀癌平 (Herceptin®)對於人類表皮生長因子第二受體 (HER2/neu)具有高度辨識能力,為使磁性奈米粒子具有辨識目標組織的功能,引進單株抗體賀癌平增加磁性奈米粒子特異性。
磁性奈米粒子採用共沉法製備,並用檸檬酸鈉修飾奈米粒子表面,增加磁性奈米粒子水溶液之分散性;鍵結Herceptin之奈米粒子與HER2/neu過度表現細胞株SK-BR-3一起培養,利用普魯士藍染色法證明鍵結Herceptin之奈米粒子具有標靶能力,細胞表面鐵定量得4.52 ρg/cell。進行高週波加熱,於奈米粒子濃度5 mg/mL時,細胞存活率減少3%。
The superparamagnetic iron oxide nanoparticles(SPIO) will produce heat that can be used in hyperthermia tumor therapy at high-frequency AC magnetic field. However, the binding of SPIO for tumor tissue is not specific and may lead to hurt the surrounding normal tissue. It restrains the application of SPIO in hyperthermia. Therefore, the modification of SPIO with highly specific monoclonal antibody, Herceptin® , which can identify the human epidermal growth factor receptor 2 (HER2/Neu) will greatly enhance the ability to target tumor.
We use the coprecipitating method to preparation the SPIO and modified it with citric acid to enhance the dispersivity and stability in the aqueous solution. The Herceptin-modified SPIO can target to HER2/neu overexpression breast cancer cell, SKBR3, detected by Prussian blue staining method. As a result, its’ targeting effect may be used in hyperthermia therapy. The quantitation of cell surface is 4.52 ρg/cell. for high-frequency AC magnetic field heating, the survival rate of cell decrease by 3% on the concentration 5 mg/mL of nanoparticle.
1. Pecorino, L. "Molecular biology of cancer", New York, U.S.A., Oxford publisher (2005).
2. 陳若白,黃敬倫,鄭安理 "癌症的分子標靶治療 Molecular-targeted Therapy in Cancer" 臺大醫院 腫瘤醫學部。
3. Govindan,S.V., Griffiths, G. L., Hansen, H. J., Horak, I. D. and Goldenberg, D. M., "Cancer therapy with radiolabeled and drug/toxin-conjugated antibodies", Technology in Cancer Research & Treatment, 4(4) p. 375-391 (2005).
4. Yamamoto, M. and Curiel, D.T., "Cancer gene therapy", Technology in Cancer Research & Treatment, 4(4) p. 315-330 (2005).
5. Kerbel, R. and Folkman, J., "Clinical translation of angiogenesis inhibitors" Nature Reviews Cancer , 2(10) p. 727-739 (2002).
6. Jain, R. K., Duda, D. G, Clark, J. W. and Loeffler, J. S., "Lessons from phase III clinical trials on anti-VEGF therapy for cancer", Nature Clinical Practice Oncology, 3(1) p. 24-40 (2006).
7. Sawyers, C., "Targeted cancer therapy", Nature, 432(7015) p. 294-297 (2004).
8. Rubin, I. and Yarden, Y., "The basic biology of HER2", Annals of Oncology, 12 p. 3-8 (2001).
9. Albanell, J., Codony, J., Rovira, A., Mellado, B. and Gascon, P., "Mechanism of action of anti-HER2 monoclonal antibodies: Scientific update on trastuzumab and 2C4", in New Trends in Cancer for the 21st Century, Kluwer Academic/Plenum Publ: New York, p. 253-268 (2003).
10. Kumar, R., "Molecular targeting and signal transduction", Cancer treatment and research, S.T. Rosen ed., Houston, Texas, U.S.A., Kluwer Academic Publisher (2004).
11. Massague, J., Blain, S.W. and Lo, R.S., "TGF beta signaling in growth control, cancer, and heritable disorders", Cell, 103(2) p. 295-309 (2000).
12. Merlin, J.L., Barberi-Heyob, M. and Bachmann, N., "In vitro comparative evaluation of trastuzumab (Herceptin (R)) combined with paclitaxel (Taxol (R)) or docetaxel (Taxotere (R)) in HER2-expressing human breast cancer cell lines", Annals of Oncology, 13(11) p. 1743-1748 (2002).
13. Lu, Y.H., Zi, X. L., Zhao, Y. H., Mascarenhas, D. and Pollak, M., "Insulin-like growth factor-I receptor signaling and resistance to trastuzumab (Herceptin)", Journal of the National Cancer Institute, 93(24) p. 1852-1857 (2001).
14. Khwaja, A., RodriguezViciana, P., Wennstrom, S., Warne, P. H. and Downward, J., "Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway", Embo Journal, 16(10) p. 2783-2793 (1997).
15. Khwaja, A., RodriguezViciana, P., Wennstrom, S., Warne, P. H. and Downward, J., "Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway", Embo Journal, 16(10) p. 2783-2793 (1997).
16. Pich, A., Margaria, E. and Chiusa, L., "Oncogenes and male breast carcinoma: c-erbB-2 and p53 coexpression predicts a poor survival", Journal of Clinical Oncology, 18(16) p. 2948-2956 (2000).
17. Clifford A., Hudis, M.D., "Trastuzumab — Mechanism of Action and Use in Clinical Practice", The New England Journal of Medicine, 357 p39-51 (2007).
18. 戴念祖,林清涼 "啟發性物理學 電磁學", 台北,台灣,五南圖書出版有限公司 p.106-110 (2001)。
19. "磁性材料特性與測量方法簡介", 台北,台灣,佳準科技股份有限公司。
20. 張煦,李學養 "磁性物理學", 台北,台灣,聯經出版社 (2004)。
21. 蘇品書 "超微粒子材料技術", 台南,台灣,復漢出版社 (1998)。
22. Ito, M. Shinkai, H. Honda, T. Kobayashi, Medical Application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 100 p. 1–11 (2005).
23. D. Ranney, P. Antich, E. Dadey, R. Mason, P. Kulkarni, O. Singh, H. Chen, A. Constantinescu, R. Parkey, Dermatan carriers for neovascular transport targeting,deep tumor penetration and improved therapy. J. Control. Release. 109 p. 222-235 (2005).
24. M. Lewin, N. Carlesso, C. H. Tung, X.W. Tang, D. Cory, D. T. Scadden, R. Weissleder, Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nature Biotechnolog, 18 p. 410-414 (2000).
25. L. A. Welo , O. Baudisch, Philos. Mag., "The two-staye transformation of magnetite into hematite" Philosophical Magazine, 50 p399-408 (1925).
26. David and A. J. E. Welch, Trans. Faraday Soc., 1956, 52, 1642.
27. E. Tombacz, E. Illes, A. Majzik, A. Hajdu, N. Rideg and M. Szekeres, Croat. Chem. Acta, 2007, 80, 503.
28. Zhong-Xi Sun, Fen-Wei Su, Willis Forsling, Per-Olof Samskog, "Surface Characteristics of Magnetite in Aqueous Suspension" JOURNAL OF COLLOID AND INTERFACE SCIENCE,197 p151-159 (1998).
29. Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications.
30. Z. Li, H. Chen, H. B. Bao, M. Y. Gao, "One-Pot Reaction to Synthesize Water-Soluble Magnetite Nanocrystals" Chem. Mater. 16(8) pp 1391-1393 (2004).
31. Zhen Li, Qiao Sun, Mingyuan Gao Prof., "Preparation of Water-Soluble Magnetite Nanocrystals from Hydrated Ferric Salts in 2-Pyrrolidone: Mechanism Leading to Fe3O4" Angewandte Chemie International Edition 44 p123-126 (2004).
32. Daou, T.J., Pourroy, G., Begin-Colin, S., Greneche, J. M., Ulhaq-Bouillet, C., Legare, P., Bernhardt, P., Leuvrey, C., Rogez, G.., "Hydrothermal synthesis of monodisperse magnetite nanoparticles", Chemistry of Materials, 18(18) p. 4399-4404 (2006).
33. Ito, H. Hoinda and T. Kobayashi, “Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: a novel concept of “heat-controlled necrosis” with heat shock protein expression,” Cancer Immunol Immunother, 55, p. 320-328 (2006).
34. Ito, M. Shinkai, H. Honda, K. Yoshikawa, S. Saga, T. Wakabayashi, J. Yoshida and T. Kobayashi, ”Heat shock protein 70 expression induces an antitumor immunity during intracellular hyperthermia using magnetite nanoparticles,” Cancer Gene Therapy, 52, p. 80-88 (2003).
35. Hall, E.J. "Hyperthermia", 5th ed , Philadelphia, Lippincott Williams& Wilkins publisher (2000).
36. Streffer, C. "Hyperthermia and the therapy of malignant tumors", New York, Springer-Verlag (1987).
37. Babincova, M., Leszczynska, D., Sourivong, P., Cicmanec, P., and Babinec, P., "Superparamagnetic gel as a novel material for electromagnetically induced hyperthermia", Journal of Magnetism and Magnetic Materials, 225(1-2) p. 109-112 (2001).
38. Mornet, S., Vasseur, S., Grasset, F., and Duguet, E., "Magnetic nanoparticle design for medical diagnosis and therapy", Journal of Materials Chemistry, 14(14) p. 2161-2175 (2004).
39. W. Weitschies, K.P., R. Kotitz, W. Semmler, ," Mobility of magnetic PEG-nanoparticles in blood, liver and spleen of rats", in Proc. 2nd World Meeting APGI/APV, Paris, (1998).
40. 王青,姜繼森,甘志鋒 "氨基酸在磁性奈米粒子上的吸附研究" 化學通報,2005年,第68卷。
41. Yingxun Liu, Zhongping Chen, Jinke Wang, "Systematic evaluation of biocompatibility of magnetic Fe3O4 nanoparticles with six different mammalian cell lines", J Nanopart Res, 13 p.199-212 (2011).
42. BIAO LE, MASASHIGE SHINKAI, TAMOTSU KITADE, HIROYUKI HONDA, JUN YOSHIDA, TOSHIHIKO WAKABAYASHI, TAKESHI KOBAYASHI, "Preparation of Tumor-Specific Magnetoliposomes and TheirApplication for Hyperthermia", Journal of Chemical Engineering of Japan, 34 pp. 66–72 (2001).