| 研究生: |
蔡欣雨 Tsai, Hsin-Yu |
|---|---|
| 論文名稱: |
聚丙烯腈穿插之聚醚二胺交聯型膠態高分子電解質的合成與其於電雙層電容器之應用 Synthesis of Polyacrylonitrile Interpenetrating Crosslinked-Polyetherdiamines based Gel Electrolyte and Applied for Electric Double Layer Capacitors |
| 指導教授: |
郭炳林
Kuo, Ping-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 電雙層電容器 、高分子膠態電解質 、聚丙烯腈 、聚氧乙烯 |
| 外文關鍵詞: | Capacitor, Gel polymer electrolyte, cross-linked polymer, Polyacrylonitrile, Polyoxyethylene |
| 相關次數: | 點閱:146 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究建立ㄧ膠態高分子電解質(Gel polymer electrolyte, GPE),首先利用氧化還原聚合法合成聚醚二胺接枝聚丙烯腈的共聚高分子,並和聚醚二胺和 PEGDE進行反應,製備出含聚丙烯腈交聯型高分子電解質膜 (XANE),以二甲基甲醯胺(DMF)為塑化劑,過氯酸鋰(LiClO4)為添加的鹽類而形成膠態電解質,應用於電雙層電容器上。本研究利用FT-IR 和1H NMR鑑定聚醚二胺接枝聚丙烯腈的共聚高分子結構;由SEM觀察含聚丙烯腈交聯型高分子電解質膜的表面型態;經由DSC結果可得知當添加聚醚二胺接枝聚丙烯腈共聚高分子,可降低膠態電解質的Tg。於電化學性質方面,此膠態電解質隨著聚丙烯腈及聚氧乙烯組成比例不同,離子傳遞能力也不相同,在聚丙烯腈對聚氧乙烯莫耳數比例為0.15時,可得到最高的離子導電度為7.6 ×10-3 S cm-1;在循環伏安法進行電化學穩定性測試可以發現穩定電位窗為2.1 V;在微拉伸測試中此膠態電解質能夠承受的極限應力可達8.7 Mpa 。
經拉曼光譜得知聚丙烯腈可增進鋰鹽解離程度之外若接枝在高分子上可形成一離子通道促進離子傳遞能力。另外聚氧乙烯在二甲基甲醯胺中有極佳的分散性,可避免聚丙烯腈鏈段的團聚。綜合上述,聚丙烯腈及聚氧乙烯都可有效地提高電雙層電容器的儲能表現。在組成對稱性二極式超級電容器,使用活化介相瀝青/石墨烯複合碳材為電極材料,工作電位2.1 V,在高比功率為10 kW kg-1 (~ 5 kW L-1)下,比能量可高達20 Wh kg-1 (~ 10 Wh L-1)。此外,此膠態電解質製作方法簡易,也具有良好的機械完整性,可應用在工業捲對捲製程也可形成可撓式電容,極具發展潛力。
A gel polymer electrolyte (GPE) consisting of polyacrylonitrile (PAN)-interpenetrating crosslinked polyoxyethylene (PEO) network, donated as XANE, as a host, dimethylformamide as a plasticizer, and LiClO4 as a electrolytic salt was utilized for electric double layer capacitors due to its stable potential window and good mechanical strength as well as chemical stability. The conductivity value of XANE GPE with a tuned AN/EO ratio were ranged from 3.54 to 7.55 mS cm−1, in which all XANE GPEs were higher than that of liquid-phase liquid electrolyte (LE) (1.60 mS cm−1). For capacitor application, the capacitance values at low currents (0.125 A g-1) of XANE GPE cells were ranged of 196.1 to 247.0 F g-1, for comparison, the LE cell delivered an capacitance value of 183 F g−1 at the same discharge rate. The XANE GPE cell has a maximum energy density of 37.7 Wh Kg-1 and maintained 20 Wh kg-1 at a high power of 10 kW kg-1 when using a high porosity carbon electrode derived from mesophase pitch activation.
1. Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes. ACS Nano. 2010, 4, 1443-1450.
2. Zhou, Y.; Kim, Y. H.; Jo, C. S.; Lee, J. W.; Lee, C. W.; Yoon, S. H. A novel mesoporous carbon-silica-titania nanocomposite as a high performance anode material in lithium ion batteries. Chem Commum. 2011, 47, 4944-4946.
3. Kumar, Y.; Pandey, G. P.; Hashmi, S. A. Gel Polymer Electrolyte Based Electrical Double Layer Capacitors: Comparative Study with Multiwalled Carbon Nanotubes and Activated Carbon Electrodes. J. Phys. Chem. C 2012, 116, 26118-26127.
4. Yoo, J. J.; Balakrishnan, K.; Huang, J. S.; Meunier, V.; Sumpter, Bobby G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R.; Ajayan, P. M. Uitrathin Planar Graphene Supercapacitors. Nano Lett. 2011, 11, 1423-1427.
5. Kinoshita, K. John Wiley & Sons, New York, 1988, 293-387.
6. Conway, B. E. Electrochemical supercapacitors: Scientific fundamentals and technological applications; Kluwer Academic/Plenum, New York, 1999.
7. Yoon, S.; Lee, J.; Hyeon, T.; Oh, S. M. Electric Double-Layer Capacitor Performance of a New Mesoporous Carbon. J. Electrochem. Soc. 2000, 147, 2507.
8. Kotz, R.; Carlen, M. Principles and applications of electrochemical capacitor.Electrochim. Acta2000, 45, 2483-2498.
9. Strooler, M. D.; Rouff, R.S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 2010, 3, 1294-1301.
10. Huang,C. W.; Chuang, C. M.; Ting, J. M.; Teng, H. S. Significantly enhanced charge conduction in electric double layer capacitors using carbon nanotube-grafted activated carbon electrodes. J. Power Sources 2008, 183, 406-410.
11. Yoon, S.; Oh, S. M.; Lee, C. W.; Lee, J. W. Influence of Particle Size on Rate Performance of Mesoporous Carbon Electric Double-Layer Capacitor (EDLC) Electrodes Batteries and Energy Storage. J. Electrochem. Soc. 2010, 157, A1229.
12. Huang, H. C.; Huang, C. W.; Hsieh, C. T.; Kuo, P. L.; Ting, J. M.; Teng, H. S. Photocatalytically Reduced Graphite Oxide Electrode for Electrochemical Capacitors. J. Phys. Chem. C 2011, 115, 20689-20695.
13. Pasquier, A. D.; Plitz, I.; Gural, J.; Menocal, S.; Amatucci, G. Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes.J. Power Sources 2003, 113, 62-71.
14. Gamby, J.; Taberna, P. L.; Simon, P.; Fauvarque, J. F.; Chesneau, M. Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 2001, 101, 109-116.
15. Merino, C.; Soto, P.; Ortego, V. E.; Gomez de Salazar, J. M.; Pico, F.; Rojo, J. M. Carbon nanofibres and activated carbon nanofibers as electrodes in supercapacitors. Carbon 2005, 43, 551-557.
16. Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, Motoo.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as supercapacitor electrodes. Nature Materials 2006, 5, 987-994.
17. Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C 2009, 113, 13103-13107.
18. Choi, H. J.; Jung, S. M.; Seo, J. M.; Chang, D. W.; Dai, L.; Baek, J. B. Graphene for energy conversion and storage in fuel cells and supercapacitors. Nano Energy 2012, 1, 534-551.
19. Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J. et al. Carbon-Based Supercapacitors Produced by Activation of Graphene. Science 2011, 332, 1537-1541.
20. Chmiola, J.; Yushin, G.; Dash, R.; Gogotsi, Y. Effect of pore size and surface area of carbide derived carbons on specific capacitance.J. Power Sources 2006, 158, 765-772.
21. Probatle, H.; Wiener, M.; Fricke, J. Carbon Aerogels for Electrochemical Double Layer Capacitors. J. Porous Mater. 2003, 10, 213-222.
22. Cooper, A. M.; Pletcher, D.; Walsh, F. C. Chem. Rev. 1990, 837.
23. Marsan, B.; Fradette, N.; Beaudoin, C. Physicochemical and Electrochemical Properties of CuCo2O4 Electrodes Prepared by Thermal Decomposition for Oxygen Evolution.J. Electrochem. Soc. 1992, 139, 1889-1896.
24. Zheng, J. P.; Cygan, P. J.; Jow, T. R. Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors. J. Electrochem. Soc. 1995, 142, 2699-2703.
25. Mattos-Costa, F. I.; Lima-Neto,P.; Machado, S.A.S.;Avaca,L.A.Characterisation of surfaces modified by sol-gel derived RuxIr1-xO2 coatings for oxygen evolution in acid medium.Electrochim. Acta 1998, 44, 1515-1523.
26. Fenton, D. E.; Parker, J. M.; Wright, P. V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589
27. Armand, M. B. Second International meeting on Solid Electrolytes Extended Abstracts. St. Andrews Ecosse, 1978.
28. Armand, M. B. Fast Ion Transport in Solids.New York, 1979.
29. Young, H.D. Physics, Addison-Wesley Publishing Co. :New York, 1992.
30. Hamann, C.H.; Hamnett, A.; Vielstich, W.; Electrochemistry, Wiley-Vch :New York, 1998.
31. Wang, Z.; Huang, B.; Wang, S.; Xue, R.; Huang, X.; Chen, L. Competition Between the Plasticizer and Polymer on Associating with Li+ Ions in Polyacrylonitrile‐Based Electrolytes. J. Electrochem Soc. 1997, 144, 778-786.
32. Bard, A.J.; Faulkner, L.R.Electrochemical Methods Fundamental and Application, John Wiley & Sons, Canada, 1980.
33. Conway, B.E. Electrochemical supercapacitors scientific fundamentals andtechnological applications, Kluwer Academic, New York, 1999, 105.
34. Kyotani, T.; Nagai, T.; Inoue, S.; Tomita, A. Formation of New Type of Porous Carbon by Carbonization in Zeolite Nanochannels. Chem. Mater.1997,9, 609-615.
35. hi, H. Activated carbons and double layer capacitance. Electrochim. Acta1996, 41, 1633-1639.
36. Yang, H.; Yoshio, M.; Isono, K.; Kuramoto, R. Improvement of Commericial Activated Carbon and Its Application in Electric Double Layer Capacitors. Electrochem. Solid-State Lett .2002, 5, A141-A144.
37. Janes, A.; Kuring, H.; Lust, E. Characterisation of activated nanoporous carbon for supercapacitor electrode materials. Carbon, 2007, 1226-1233.
38. Endo, M.; Maeda, T.; Takeda, T.; Kim, Y. J.; Koshiba, K.; Hara, H.; Dresselhaus, M. S. Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes.J. Electrochem. Soc. 2001, 148, A910-A914.
39. Weng, T. C.; Teng, H. Characterization of High Porosity Carbon Electrodes Derived from Mesophase Pitch for Electric Double-Layer Capacitors.J. Electrochem. Soc. 2001, 148, A368-A373.
40. Endo, M.; Kim, Y. J.; Maeda, T.;Koshiba, K.; Katayama, K.; Dresselhaus, M. S. Morphological effect on the electrochemical behavior of electric double-layer capacitors. J. Mater. Res., 2001, 16, 3402.
41. Kierzek, K.; Frackwiak, E.; Lota, G.; Gryglewicz, G.; Machnikowski, J. Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim. Acta 2004, 49, 515-523.
42. Teng, H.; Chang, Y.; Hsich, C. Performance of electric double-layer capacitors using carbons prepared from phenol-formaldehyde resins by KOH etching. Carbon, 2001, 39, 1981-1987.
43. Hou, P. X.; Yamazaki, T.; Orikasa, H.; Kyotani, T. An easy method for the synthesis of ordered microporous carbons by the template technique. Carbon, 2005, 43, 2624-2627.
44. Nishihara, H.; Itoi, H.; Kogure, T.; Hou, P.; Touhara, H.; Okino, F.; Kyotani, T. Investigation of the Ion Storage/Transfer Behavior in an Electrical Double-Layer Capacitor by Using Ordered Microporous Carbons as Model Materials. Chem. Eur. J. 2009, 15, 5355-5363.
45. Wang, H.; Gao, Q.; Hu, J.; Chen, Z.High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance. Carbon, 2009, 47, 2259-2268.
46. Morishita, T.; Tsumura, T.; Toyoda, M.; Przepiorski, J.; Morawski, A. W.; Konno, H.; Inagaki, M. A review of the control of pore structure in MgO-templated nanoporous carbons. Carbon, 2010, 48, 2690-2707.
47. Morishita, T.; Soneda, Y.; Tsumura, T.;Inagaki, M. Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors.Carbon, 2006, 44, 2360-2367.
48. Fernandez, J. A.; Morishita, T.; Toyoda, M.; Inagaki, M.; Stoeckli, F.; Centeno, T. A.Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J. Power Sources 2008, 175, 675-679.
49. Gogotsi, Y.; Nikitin, A.; Ye,H.; Zou,W.; Fischer,J.E.; Yi,B.; Foley,H.C.; Barsoum, M.W.Nanoporous carbide-derived carbon with tunable pore size. Nature Materials 2003, 2, 591-594.
50. Gogotsi, Y.; Dash, R.K.; Yushin, G.; Yildirim, T.; Laudisio, G.; Fischer J.E. Tailoring of Nanoscale Porosity in Carbide-Derived Carbons for Hydrogen Storage. J. Am. Chem. Soc. 2005, 127, 16006-16007.
51. Dash, R.K.; Yushin, G.; Gogotsi, Y. Synthesis, Structure and porosity analysis of microporous andmesoporous carbon derived from zirconium carbide. Micropor. Mesopor. Mater. 2005, 86, 50-57.
52. Chmiola,J.; Yushin, G.; Gogotsi, Y.; Porter, C.; Simon, P.; Taberna, P.L. Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer. Science 2006, 313, 1760-1763.
53. Ahmadpour, A.; Do, D. D.; The preparation of active carbons from coal by chemical and physical activation. Carbon, 1996, 34, 471-479
54. Huang, C. W.; Hsieh, C. T.; Kuo, P. L.; Teng, H. S. Electric double layer capacitors based on a composite electrode of activated mesophase pitch and carbon nanotubes. J. Mater. Chem. 2012, 22, 7314.
55. Béguin F., Presser,V. Balducci A. and Frackowiak E. Carbons and Electrolytes for Advanced Supercapacitors . Adv. Mater. 2014, 26, 2219–2251.
56. Bennett J. L., Dembek A. A., Allcock H. R., Chem. Mater.1989, 1, 14,
57. Lee S.M.; Chen C.Y.; Wang C.C.The study on the conductivity and morphology of polyurethaneurea electrolytes based on poly(ethylene glycol) 2000 and LiClO4. Electrochim. Acta 2003, 48, 3699-3708
58. Lee, S. M.; Chena, C. Y.; Wang, C. C. The effect of the length of the oxyethylene chain on the conductivity of the polyurethaneurea electrolyte. Electrochim. Acta 2004, 49, 4907-4913.
59. Wang, H. L.; Kao, H. M.; Digar, M.; Wen, T. C. FTIR and Solid State 13C NMR Studies on the Interaction of Lithium Cations with Polyether Poly(urethane urea). Macromolecules 2001, 34, 529-537.
60. Wu, C. G.; Wu, C. H.; Lu, M. I.; Chuang, H. J.New Solid Polymer Electrolytes Based on PEO/PAN Hybrids. J. Appl. Polym. Sci.2005, 99, 1530-1540.
61. Magistris, A.; Singh, K. PEO-Based Polymer Electrolytes. Polymer International 1992, 277-280.
62. Gnanaraj, J. S.; Karekar, R. N.; Skaria, S.; Rajan, C. R.; Ponrathnam, S. Studies on comb-like polymer blend with poly(ethylene oxide)-lithium perchlorate salt complex electrolyte. Polymer, 1997, 38, 3709-3712.
63. Qi, L.; Lin, Y.; Jing, X.; Wang, F. Study of the conductivity and side chain mobility of a comb-like polymer electrolyte using the dynamic mechanical method. Solid State Ionics, 2001,139, 293-301.
64. Ikeda, Y.; Wada, Y.; Matoba, Y.; Murakami, S.; Kohjiya, S. Characterization of comb-shaped high molecular weight poly(oxyethylene) with tri(oxyethylene) side chains for apolymer solid electrolyte. Electrochim. Acta 2000, 45, 1167-1174.
65. Houa, W. H.; Chena, C. Y.; Wang, C. C. The environment of lithium ions and conductivity of comb-like polymer electrolyte with a chelating functional group. Polymer, 2003, 44, 2983-2991.
66. Yang, H. Y.; Wu, G.; Chen, H.; Yuan, F.; Wang, M.; Fu, R. J. Preparation and Ionic Conductivity of Solid PolymerElectrolyte Based on Polyacrylonitrile-Polyethylene Oxide. J. Appl. Polym. Sci. 2006, 101, 461-464.
67. Kuo, P. L.; Liang, W. J.; Lin, C. L. Preparation and IonicConductivity of Solid PolymerElectrolytes Based on Segmented Polysiloxane-Modified Polyurethane. Macromol. Chem. Phys. 2002, 203, 230-237.
68. Liang, W. J.; Kuo, C. L.; Lin, C. L.; Kuo, P. L. Solid Polymer Electrolytes. IV. Preparation andCharacterization of Novel Crosslinked Epoxy-SiloxanePolymer Complexes as Polymer Electrolytes. J. Polym. Sci., Part A: Polym. Chem.2002, 40, 1226-1235.
69. Liang, W. J.; Kuo, P. L. Solid polymer electrolytes VIII: effect of LiClO4-doped level on themicrostructure and ionic conductivity of a chemical-covalentlypolyether-siloxane hybrid electrolyte.Polymer, 2004, 45, 1617-1626.
70. Dias F. B., Veldhuis B. J., J. Power Sources, 2000, 88, 169-191.
71. Bennett J. L., Dembek A. A., Allcock H. R., Chem. Mater, 1989, 1, 14.
72. Hamann, C.H.; Hamnett, A.; Vielstich, W.; Electrochemistry, Wiley-Vch :New York, 1998.
73. Hsueh M., Huang C., Wu C., Kuo P., and Teng H.,The Synergistic Effect of Nitrile and Ether Functionalities for Gel Electrolytes Used in Supercapacitor J. Phys. Chem. C. 2013, 117, 16751−16758.
74. Essentials of Materials Science & Engineering. Donald R. Askeland ; Fulay P P.
75. 蔡岳峻,有機高分子/負離子粉體複合材料功能與拉伸性質之研究,碩士論文,國立台北科技大學,台北,2005。
76. 王裕仁,水性聚氨基甲酸酯/負離子粉體複合薄膜功能性之研究,碩士論文,國立台北科技大學,台北,2007。
77. 陳廷菖、鄭國彬、鄭大偉,ABS 導電複合材料電氣與拉伸性質之研究,20th Symposium on Fiber and Textile Technology,2004,CP-015.
78. 邱均浩,ABS/ 負離子複合材料動態負離子釋放量與物理性質之研究,碩士學位論文,國立台灣科技大學,台北,2007。
79. S.K. Chaurasia, R.K. Singh and S. Chandra. Ion–polymer and ion–ion interaction in PEO-based polymer electrolytes having complexing salt LiClO4 and/or ionic liquid,[BMIM][PF6]. J. Raman Spectrosc. 2011, 42, 2168–2172
校內:2019-07-31公開