簡易檢索 / 詳目顯示

研究生: 林蔚叡
Lin, Wei-Jui
論文名稱: 以鐵酸鉍複鐵式材料為釘札層製作全氧化物自旋閥之研究
Fabrication and characterization of all-oxide spin valve with multi-ferroic BiFeO3 as the pinning layer
指導教授: 齊孝定
Qi, Xiao-ding
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 121
中文關鍵詞: 複鐵式材料鐵酸鉍交換偏磁尖晶石鐵氧體
外文關鍵詞: Multi-ferroic, BiFeO3, Exchange bias, Spinel ferrite
相關次數: 點閱:95下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在爲數不多的複鐵式材料中,鐵酸鉍(BiFeO3)是目前唯一被證實居禮溫度(TC)與尼爾溫度(TN)兩個轉變溫度都在室溫以上的複鐵式材料。BiFeO3同時擁有反鐵磁特性與相當大的鐵電極化量,並具備磁-電耦合特性,因此擁有製作成元件的潛力。我們的目標就是運用BiFeO3為釘札層製作全氧化物自旋閥元件,其他各層材料為:Zn0.7Ni0.3Fe2O4/ LaNiO3/ Zn0.7Ni0.3Fe2O4/ BiFeO3/ LaNiO3/ SrTiO3。本論文詳細討論這種新穎元件的製作過程及其所遇到的問題,其中包括自製氧化物靶材,射頻磁控濺鍍成長各層氧化物薄膜,以及各層膜的物理特性與異質磊晶引起的晶體結構變形等問題,主要成果概括如下。
    LaNiO3金屬氧化物導電特性與晶體結構中氧離子化學劑量比有關,氧空位的形成會造成單位晶胞體積增加,以及結構中部分Ni3+還原成Ni2+而讓具有近似立方的鈣鈦礦結構扭曲,導電率下滑。此外,過多的氧空位讓Ni變得更容易擴散進入相鄰的BiFeO3薄膜,使BiFeO3的漏電流增加。作爲鐵磁層的Zn0.7Ni0.3Fe2O4,其磊晶薄膜成長於BiFeO3表面時,晶體結構會因受到壓縮應力而使氧離子空位減少,晶包體積縮小,但磊晶成長仍造成其晶體結構從立方晶系扭曲變形為四方晶系。此結構扭曲會迫使一部分處於四面體配位中的Zn離子到八面體配位中去,與Fe離子互換,造成飽和磁化量(MS)的降低。Zn0.7Ni0.3Fe2O4/ BiFeO3接面在磁場5k Oe下從400 oC冷卻到室溫後,室溫下量測可觀察到交換偏磁(exchange bias)效應,偏磁場為20 Oe,矯頑力為30 Oe。而偏磁場與矯頑力也會隨著量測溫度呈現大幅度的變化,5K溫度下量測,偏磁場與矯頑力分別增加到150 Oe與900 Oe。另外我們也觀察到,以低於BiFeO3尼爾溫度的 300 OC度退火,依舊能建立交換偏磁,偏磁場與矯頑力分別8 Oe與19 Oe。最終完成的全氧化物自旋閥,在室溫環境下和100 Oe的低磁場範圍內,磁阻變化率為0.86%。但受限於BiFeO3的漏電流,藉由電場控制磁阻的變化的目標尚無法達成。
    最後章節討論到,在BiFeO3 B-site上共摻雜Ti4+與Mg2+可以抑制BiFeO3中Fe2+的形成,降低漏電流。且經由不具磁矩的Ti4+與Mg2+稀釋BiFeO3中反鐵磁有序排列的Fe3+離子,會使尼爾溫度(TN)隨摻雜量提高而降低,有利於避免磁場退火時的化學反應。最後完成的Zn0.7Ni0.3Fe2O4/ BiFe0.9(Mg Ti)0.1O3異質磊晶結構,在外加磁場5k Oe下從290 oC冷卻到室溫後,室溫下量測,交換偏磁場為9 Oe,矯頑力為15 Oe。

    The aim of this work was to fabricate an all-oxide spin valve using multiferroic BiFeO3 as the antiferromagnetic pinning layer. The proposed architecture was Zn0.7Ni0.3Fe2O4/ LaNiO3/ Zn0.7Ni0.3Fe2O4/ BiFeO3/ LaNiO3/ SrTiO3. We have grown such a multilayered heterostructure epitaxially by the RF magnetron sputtering. X-ray diffraction showed that the films were indeed biaxially aligned with reasonable in-plane and out-of-plane textures, under the growth conditions optimised for achieving good ferroelectric and magnetic properties. Some key physical and material issues for building up such a novel device were addressed, in particular the heteroepitaxy-induced strain effects on the electrical and magnetic properties of each layer and the establishment of exchange bias between BiFeO3 and Zn0.7Ni0.3Fe2O4. The strains caused a significant increase in the coercivity but a decrease in the saturation magnetization of the ferrimagnet used. The all-oxide architecture allowed the spin valve to be field-annealed from a temperature above the Neel point of BFO (380 OC), after which a clear exchange bias was observed. Magnetoresistance was also achieved in such all-oxide spin valves, which was switchable magnetically in a similar way as the conventional metallic spin valves.

    摘要 I Extended Abstract III 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XVII 第一章 緒論 1 1-1 簡介 1 1-2 研究動機 2 第二章 文獻回顧與理論基礎 4 2-1 物質磁性來源、與分類 4 2-1-1 抗磁性 (Diamagnetism) 7 2-1-2 順磁性 ( Paramagnetism ) 8 2-1-3 鐵磁性 (Ferromagnetism) 8 2-1-4 反鐵磁性 (Antiferromagnetism) 9 2-1-5 亞鐵磁性 (Ferrimagnetism) 11 2-2 磁電阻原理 12 2-3 磁阻分類 15 2-4 自旋閥巨磁阻元件 17 2-4-1 自旋閥材料之巨磁阻 (spin valve GMR) 17 2-4-2 自旋閥的膜層結構 20 2-5 鈣鈦礦 (Perovskite) 23 2-5-1 鎳酸鑭 (LaNiO3-) 26 2-5-2 鉍鐵氧 (BiFeO3) 28 2-5-3 鐵酸鋅鎳 (NixZn1-xFe2O4) 34 第三章 實驗方法與流程 37 3-1 實驗流程 37 3-1-1 固態反應法製作個氧化物把材 38 3-2 射頻磁控濺鍍原理與設備 41 3-3 X光繞射儀 (X-Ray Diffractometer,XRD) 44 3-4 化學分析電子儀 (Electron Spectroscopy for Chemical Analysis, ESCA) 46 3-5 拉曼散射系統 (Raman scattering) 48 3-6 超導量子干涉震動磁量儀 (Superconducting Quantum Interference Device Vibrating Sample Magnetometer,SQUID-VSM) 50 3-7 穿透式電子顯微鏡 (Transmission Electron Microscopy,TEM) 52 3-8 電滯曲線量測儀 (Ferroelectric Hysteresis Measurement) 54 第四章 以磁控濺鍍法備製LaNiO3薄膜與BiFeO3/LaNiO3雙層膜性質之研究 56 4-1 LaNiO3多晶薄膜氧空缺對導電性影響之研究 56 4-2 LaNiO3磊晶薄膜Ni擴散對後續成長BiFeO3薄膜漏電流影響之研究 57 第五章 以磁控濺鍍法備製Zn0.7Ni0.3Fe2O4薄膜與Zn0.7Ni0.3Fe2O4 / BiFeO3雙層膜性質之研究 70 5-1 ZnxNi1-xFe2O4塊材磁性之研究 70 5-2 Zn0.7Ni0.3Fe2O4薄膜氧缺陷對磁性之影響 72 5-3 Zn0.7Ni0.3Fe2O4薄膜應力對磁性之影響 73 5-4 Zn0.7Ni0.3Fe2O4 / BiFeO3雙層磊晶薄膜之研究 75 5-4-1 ZNFO製程溫度對ZNFO/BFO雙層膜之影響 75 5-4-2 ZNFO氧缺陷對ZNFO/BFO雙層膜之影響 77 第六章 Zn0.7Ni0.3Fe2O4 / BiFeO3磁交換性質討論與全氧化物自旋閥磁阻量測 92 6-1. Zn0.7Ni0.3Fe2O4 / BiFeO3磁交換性質討論 92 6-2. Zn0.7Ni0.3Fe2O4 / BiFeO3界面的原子模型 95 6-3.全氧化物自旋閥磁阻量測結果 96 第七章 B-site共摻雜Ti 4+和Mg 2+ 對BiFeO3結構與尼爾溫度的影響 104 7-1 BiFe1-X(Ti Mg)XO3 塊材的結構與尼爾溫度變化之研究 104 7-2 BiFe0.9(Ti Mg)0.1O3 薄膜的鐵電特性 105 7-3 ZNFO/BFTMO交換偏壓場的結果討論 107 第八章 結論 112 參考文獻 114

    1.M. N. Baibich, J. M. Broto, A Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices” Phys. Rev. Lett., 61, 2472 (1988)

    2.G. Binasch, P. Grünberg, F. Saurenbach and W. Zinn, “Enhanced magnetiresistance in layered magnetic structures with antiferromagnetic interlayer exchange” Phys. Rev. B, 39, 4828 (1989)

    3.P. Baumgart, B. A. Gurney, D. R. Wilhoit, T. Nguyen1, B. Dieny and V. S. Speriosu, “The role of spin‐dependent impurity scattering in Fe/Cr giant magnetoresistance multilayers” J. Appl. Phys., 69, 4792 (1991)

    4.F. J. Castano, D. Morecroft, W. Jung, and C. A. Ross, “Spin-Dependent Scattering in Multilayered Magnetic Rings” Phys. Rev. Lett., 95, 137201 (2005)

    5.B. Dieny, “Giant magnetoresistance in spin-valve multilayers” J. Magn. Magn. Mater., 136, 335 (1994)

    6.J.C.S. Kools, “Exchange-biased spin-valves for magnetic storage” IEEE Trans. Magn., 32, 3165 (2002)

    7.S. W. Yuan and H. N. Bertram, “Micromagnetics of GMR spin‐valve heads” J. Appl. Phys., 75, 6385 (1994)

    8.C.Chappert, A. Fert and F. N. V. Dau, “The emergence of spin electronics in data storage” Nat. Mater., 6, 813 (2007)

    9.N. Honda, K. Ouchi, S. Iwasaki, “1.5 Gbit/in2 perpendicular recording with inductive head” IEEE Trans. Magn., 33, 3097 (1997)

    10.H. Kanai, H. Yamada K. Aoshima K. Ohtsuka Y. Kane J. Kanamine M. Toda J. Mizoshita, “Spin-valve read heads with NiFe/Co90Fe10 layers for 5 Gbit/in2 density recording” IEEE Trans. Magn., 32, 3368 (1996)

    11.J.M. Daughton, “GMR applications” J. Magn. Magn. Mater., 192, 334 (1999)

    12.K. H. J. Buschow and F. R. de Boer, “Physics of Magnetism and Magnetic Materials” Kluwer Academic, New York (2003) p.3

    13.K. H. J. Buschow and F. R. de Boer, “Physics of Magnetism and Magnetic Materials” Kluwer Academic, New York (2003) pp.22-34

    14.D. Jiles, “ Introduction to magnetism and magnetic materials” 2nd Ed., Taylor & Francis, London, pp.104-108, pp.83-85

    15.R. S Popovic, “Hall effect devices” 2nd Ed., Institute of physics publishing, UK, pp. 63-74

    16.B. A. Gurney, V. S. Speriosu, D. R. Wilhoit, H. Lefakis, R. E. Fontana Jr., D. E. Heim and M. Dovek, “Can spin valves be reliably deposited for magnetic recording applications?” J. Appl. Phys., 81, 3998 (1997)

    17.R. E. Camley and R. L. Stamps “Magnetic multilayers: spin configurations, excitations and giant magnetoresistance” J. Phys. Cond. Mat., 5, 3727 (1993)

    18.M. Ziese and H. J. Blythe, “Magnetoresistance of magnetite” J. Phys. Cond. Mat., 12, 953 (2000)

    19.G. Q. Gong, C. Canedy, G. Xiao, J. Z. Sun, A. Gupta and W. J. Gallagher, “Colossal magnetoresistance of 1 000 000‐fold magnitude achieved in the antiferromagnetic phase of La1−xCaxMnO3” Appl. Phys. Lett., 67, 1783 (1995)

    20.Y. Nagamine, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe, S. Yuasa and K. Ando, “Ultralow resistance-area product of 0.4 Ω(μm)2 and high magnetoresistance above 50% in CoFeB/MgO/CoFeB magnetic tunnel junctions” Appl. Phys. Lett., 89, 162507 (2006)

    21.S. S. P. Parkin, “Origin of enhanced magnetoresistance of magnetic multilayers: Spin-dependent scattering from magnetic interface states” Phys. Rev. Lett., 71, 1641 (1993)

    22.R. D. McMichael, C. A. Ross, V. P. Chuang, “Thickness dependence of magnetic film edge properties in Ni80Fe20 stripes” J. Appl. Phys., 103, 505 (2008)

    23.F. J. Castano, D. Morecroft, W. Jung and C. A. Ross, “Spin-Dependent Scattering in Multilayered Magnetic Rings” Phys. Rev. Lett., 95, 137201 (2005)

    24.B. Dieny, V. S. Speriosu1, S. Metin, S. S. P. Parkin, B. A. Gurney, P. Baumgart1 and D. R. Wilhoit, “Magnetotransport properties of magnetically soft spin‐valve structures” J. Appl. Phys., 69, 4774 (1991)

    25.M. Avram, R. Vasilco, M. Volmer, A. Popescu and A. Ghiu, “The optimised spin-valve magnetotransistor” Mater. Sci. Eng. B, 152, 72 (2008)

    26.S.D. Bader, K.S. Buchanan, S. H. Chung, K.Y. Guslienko, A. Hoffmann and V. Novosad, “Issues in nanomagnetism” Superlattice. Microst., 41, 72 (2007)

    27.J. Barnas, “Coupling between two ferromagnetic films through a nonmagnetic metallic layer” J. Magn. Magn. Mater., 111, 215 (1992)

    28.S. O. Demokritov, C. Bayer, S. Poppe, M. Rickart, J. Fassbender, B. Hillebrands, D. I. Kholin, N. M. Kreines and O. M. Liedke, “Control of Interlayer Exchange Coupling in Fe/Cr/Fe Trilayers by Ion Beam Irradiation” Phys. Rev. Lett., 90, 097201 (2003)

    29.A.E. Berkowitz and Kentaro Takano, “Exchange anisotropy - a review” J. Magn. Magn. Mater., 200, 552 (1999)

    30.P. J. van der Zaag, Y. Ijiri, J. A. Borchers, L. F. Feiner, R. M. Wolf, J. M. Gaines, R. W. Erwin and M. A. Verheijen, “Difference between Blocking and Néel Temperatures in the Exchange Biased Fe3O4/CoO System” Phys. Rev. Lett., 84, 6102 (2000)

    31.M. G. Blamire, M. Ali, C.-W. Leung, C. H. Marrows and B. J. Hickey, “Exchange Bias and Blocking Temperature in Co/FeMn/CuNi Trilayers” Phys. Rev. Lett., 98, 217202 (2007)

    32.J.R. Sun, G.H. Rao and J.K. Liang, “Crystal structure and electronic transport property of perovskite manganese oxides with a fixed tolerance factor” Appl. Phys. Lett., 70, 1900 (1997)

    33.L.Q. Jiang, J.K. Guo, H.B. Liu, M. Zhu, X. Zhou, P. Wu and C.H. Li, “Prediction of lattice constant in cubic perovskites” J. Phys. Chem. Solids, 67, 1531 (2006)

    34.J. Kurian, J. Koshy, P.R.S. Wariar, Y.P. Yadava and A.D. Damodaran, “Synthesis and Characterization of Rare-Earth Barium Antimonates, a New Group of Complex Perovskites Suitable as Substrates for YBa2Cu3O7-δ Films” J. Solid State Chem. 116, 193 (1995)

    35.C. Ritter, M. R. Ibarra, J. M. De Teresa, P. A. Algarabel, C. Marquina, J. Blasco, J. García, S. Oseroff and S-W. Cheong, “Influence of oxygen content on the structural, magnetotransport, and magnetic properties of LaMnO3+δ” Phys. Rev. B, 56, 8902 (1997)

    36.G. Gou, I. Grinberg, A. M. Rappe and J. M. Rondinelli, “Lattice normal modes and electronic properties of the correlated metal LaNiO3” Phys. Rev. B, 84, 144101 (2011)

    37.X. Obradors, L. M. Paulius, M. B. Maple, J. B. Torrance, A. I. Nazzal, J. Fontcuberta and X. Granados, “Pressure dependence of the metal-insulator transition in the charge-transfer oxides RNiO3 (R=Pr,Nd,Nd0.7La0.3)” Phys. Rev. B, 47, 12353 (1993)

    38.M. Amboage, M. Hanfland, J. A. Alonso and M. J. Martínez-Lope, “High pressure structural study of SmNiO3” J. Phys. Cond. Mat., 17, 783 (2005)

    39.R. D. Sánchez, M. T. Causa, A. Caneiro, A. Butera, M. Vallet-Regí, M. J. Sayagués, J. González-Calbet, F. García-Sanz and J. Rivas, “Metal-insulator transition in oxygen-deficient LaNiO3-x perovskites” Phys. Rev. B, 54, 16574 (1996)

    40.M. Mahesh Kumar, V. R. Palkar, K. Srinivas and S. V. Suryanarayana, “Ferroelectricity in a pure BiFeO3 ceramic” Appl. Phys. Lett., 76, 2764 (2000)

    41.T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima and Y. Tokura, “Magnetic control of ferroelectric polarization” Nature, 426, 55 (2003)

    42.M. Fiebig, Th. Lottermoser, D. Fröhlich, A. V. Goltsev and R. V. Pisarev, “Observation of coupled magnetic and electric domains” Nature, 419, 818 (2002)

    43.T. Katsufuji, S. Mori, M. Masaki, Y. Moritomo, N. Yamamoto and H. Takagi, “Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R=Y, Yb, and Lu)” Phys. Rev. B, 64, 104419 (2001)

    44.C. Li, X. Zhang, Z. Cheng, Y. Sun, “Electric field induced phase transition in charge-ordered LuFe2O4” Appl. Phys. Lett., 93, 15 (2103)

    45.T. Kimura, G. Lawes, T. Goto, Y. Tokura and A. P. Ramirez, “Magnetoelectric phase diagrams of orthorhombic RMnO3 (R=Gd, Tb, and Dy)” Phys. Rev. B, 71, 224425 (2005)

    46.T. Zhao, A. Scholl, F. Zavaliche, K. Lee1, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom and R. Ramesh, “Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature” Nature Mat., 5, 823 (2006)

    47.C. Ederer and N. A. Spaldin, “Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite” Phys. Rev. B, 71, 060401 (2005)

    48.I. A. Sergienko and E. Dagotto, “Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites” Phys. Rev. B, 73, 094434 (2006)

    49.D. C. Arnold, K. S. Knight, F. D. Morrison and P. Lightfoot, “Ferroelectric-Paraelectric Transition in BiFeO3: Crystal Structure of the Orthorhombic β Phase” Phys. Rev. Lett., 102, 027602 (2009)

    50.H. Yang, Y. Q. Wang, H. Wang and Q. X. Jia, “Oxygen concentration and its effect on the leakage current in BiFeO3 thin films” Appl. Phys. Lett., 96, 012909 (2010)

    51.D. Shi, “Functional thin films and functional materials: new concepts and technologies” 1nd Ed., Springer, New York (2003) pp. 87-91

    52.A. Goldman, “Modern ferrite technology” 2nd Ed., Springer, USA, pp.51-65

    53.K. E. Sickafus and J.M. Wills, “Spinel Coumpounds: Structure and Property Relations” J. Am. Cerm. Soc., 82, 3279 (1999)

    54.J. Kanamori, “Superexchange interaction and symmetry properties of electron orbitals” J. Phys. Chem. Solids, 10, 87 (1959)

    55.C. M. Srivastava, G. Srinivasan and N. G. Nanadikar, “Exchange constants in spinel ferrite” Phy. Rev. B, 19, 499 (1979)

    56.N.D. Chaudharia, R.C. Kambalec, D.N. Bhosalea, S.S. Suryavanshib and S.R. Sawanta, “Thermal hysteresis and domain states in Ni–Zn ferrites synthesized by oxalate precursor method” J. Magn. Magn. Mater., 322, 1999 (2010)

    57.J. M. Sharp and S. A. Wentworth, “Kinetic Analysis of Phermogravimetric Data” Anal. Chem., 41, 2060 (1969)

    58.M. Quirk and J. Serda, “Semiconductor Manufacturing Technology” Prentice Hall, New Jersey (2001) pp.314-316

    59.汪建民, “材料分析” 中國材料科學學會 (1998) pp.47-53, pp.353-359, pp.659-661

    60.X. Qi, P. C. Tsai, Y. C. Chen, C. H. Ko, J. C. A. Huang and I. G. Chen, “Ferroelectric properties and dielectric responses of multiferroic BiFeO3 films grown by RF magnetron sputtering” J. Phys. D: Appl. Phys., 41, 232001 (2008)

    61.X. Qi, P. C. Tsai, Y. C. Chen, Q. R. Lin, J. C. A. Huang, W. C. Chang and I. G. Chen, “Optimal growth windows of multiferroic BiFeO3 films and characteristics of ferroelectric domain structures” Thin Solid Films, 517, 5862 (2009)

    62.X. Qi, W. C. Chang, J. C. Kuo, I. G. Chen, Y. C. Chen, C. H. Ko, J. C. A. Huang, “Growth and characterisation of multiferroic BiFeO3 films with fully saturated ferroelectric hysteresis loops and large remanent polarisations” J. Eur. Ceram. Soc., 30, 283 (2010)

    63.Y. Z. Chen, J. R. Sun, Y. N. Han, X. Y. Xie, J. Shen, C. B. Rong, S. L. He and B. G. Shen, “Microstructure and magnetic properties of strained Fe3O4 films” J. Appl. Phys., 103, 07D703 (2008)

    64.Q. Tian, Q. Wang, Q. Xie and J. Li, “Aqueous Solution Preparation, Structure, and Magnetic Properties of Nano-Granular ZnxFe3-xO4 Ferrite Films” Nanoscale Res. Lett., 5, 1518 (2010)

    65.R. L. Stamps, “Mechanisms for exchange bias” J. Phys. D: Appl. Phys., 33, R247 (2000)

    66.M. Valant, A. K. Axelsson and N. Alford, “Peculiarities of a Solid-State Synthesis of Multiferroic Polycrystalline BiFeO3” Chem. Mater., 19, 5431 (2007)

    67.N. T. Tho, T. Kanashima, M. Sohgawa, D. Ricinschi, M. Noda and M. Okuyama, “Ferroelectric Properties of Bi1.1Fe1-xCoxO3 Thin Films Prepared by Chemical Solution Deposition Using Iterative Rapid Thermal Annealing in N2 and O2” Jpn. J. Appl. Phys., 49, 09MB05 (2010)

    68.C. Morant, A. Fernández, A. R. González-Elipe, L. Soriano, A. Stampfl, A. M. Bradshaw and J. M. Sanz, “Electronic structure of stoichiometric and Ar+-bombarded ZrO2 determined by resonant photoemission” Phys. Rev. B, 52, 11711 (1995)

    69.S. Pétigny, H. Mostéfa-Sba, B. Domenichini, E. Lesniewska, A. Steinbrunn and S. Bourgeois, “Superficial defects induced by argon and oxygen bombardments on (110) TiO2 surfaces” Surface Science, 410, 250 (1998)

    70.M. Kiwi, “Exchange bias theory” J. Magn. Magn. Mater., 234, 584 (2001)

    71.W. H. Meiklejohn and C. P. Bean, “New magnetic anisotropy” Phys. Rev., 105, 905 (1954)

    72.D. Mauri, H. C. Siegmann, P. S. Bagus and E. Kay, “Simple model for thin ferromagnetic films exchange coupled to an antiferromagnetic substrate” J. Appl. Phys., 62, 3047 (1987)

    73.A. P. Malozemoff, “Random-field model of exchange anisotropy at rough ferromagnetic-antiferromagnetic interfaces” Phys. Rev. B, 35, 3679 (1987)

    74.T. Maity, S. Goswami, D. Bhattacharya and S. Roy, “Superspin Glass Mediated Giant Spontaneous Exchange Bias in a Nanocomposite of BiFeO3-Bi2Fe4O9” Phys. Rev. Lett., 110, 107201 (2013)

    75.C. K. Safeer, M. Chamfrault, J. Allibe, C. Carretero, C. Deranlot, E. Jacquet, J. F. Jacquot, M. Bibes, A. Barthélémy, B. Dieny, H. Béa and V. Baltz, “Anisotropic bimodal distribution of blocking temperature with multiferroic BiFeO3 epitaxial thin films” Appl. Phys. Lett., 100, 072402 (2012)

    76.R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan and J. F. Scott, “ phase and  metal-insulator transition in multiferroic BiFeO3” Phys. Rev. B, 77, 014110 (2008)

    77.R. Haumont, Igor A. Kornev, S. Lisenkov, L. Bellaiche, J. Kreisel and B. Dkhil, “Phase stability and structural temperature dependence in powdered multiferroic BiFeO3” Phys. Rev. B, 78, 134108 (2008)

    78.Q. Ke, X. Lou, Y. Wang and J. Wang, “Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films” Phys. Rev. B, 82, 024102 (2010)

    79.A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y. H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt and V. Gopalan, “Linear and nonlinear optical properties of BiFeO3” Appl. Phys. Lett., 92, 121915 (2008)

    80.W. W. Li, J. J. Zhu, J. D. Wu, J. Gan, Z. G. Hu, M. Zhu and J. H. Chu, “Temperature dependence of electronic transitions and optical properties in multiferroic BiFeO3 nanocrystalline film determined from transmittance spectra” Appl. Phys. Lett., 97, 121102 (2010)

    下載圖示 校內:2017-08-20公開
    校外:2019-08-20公開
    QR CODE