簡易檢索 / 詳目顯示

研究生: 康嘉顯
Kang, Chia-Hsien
論文名稱: 瓩級水冷式質子交換膜燃料電池堆性能研究
Performance of kW-scale Water-cooled PEMFC Stack
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 133
中文關鍵詞: 瓩級電池堆水冷式電池堆質子交換膜燃料電池堆性能曲線阻抗分析
外文關鍵詞: kW-scale stack, Water-cooled stack, Proton exchange membrane fuel cell (PEMFC), Polarization curve, Impedance analysis
相關次數: 點閱:142下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,吾人自行設計一組瓩級水冷式質子交換膜燃料電池堆,且進行不同實驗條件測試,包含:燃料氣體條件、入口水溫、入口水流率,進而了解此三個參數對於電池堆性能輸出與阻抗分析的影響。根據實驗結果進行定性化的檢視,且採用最佳的氣體供應參數,搭配適當的散熱條件,而使溫度分佈均勻性最佳者,做為此電池堆使用。由實驗結果顯示,於水流率5 L/min、水溫55ºC、氫氣計量比1.5、空氣計量比3.0、增濕溫度為65ºC操作下,能使該電池堆展現最佳的性能,而整體發電功率達1,431 W且其發電功率密度為694.8 mW/cm2,而最高發電效率達40.6%。
    此外,由實驗結果可得知,於增加水溫與降低水流率條件下,電池堆的溫度較容易提升,而改善電化學反應之進行,故電荷轉移阻抗下降;然而,隨著電池堆溫度的提升,其歐姆阻抗則因薄膜較乾而上升。於低入口水流率下,溫度操作條件對電池堆的性能表現將有顯著之影響,其歸因於電池堆顯著的溫度分佈不均勻性,因此入口水溫的搭配操作尤為關鍵。

    In this study, a kW-scale water-cooled PEMFC stacks is designed and tested under different conditions, including fuel conditions, inlet water temperatures , inlet water flow rates, in order to understand effects of the above three parameters on the stack performance and impedance. Based on the qualitative analysis of the experimental results, the gas parameters and thermal management conditions which make the water-cooled PEMFC stack best to be uniform thermally are applied to the stack. The experimental results show that the best performance of this stack, 1431 Watts, and its power density, 694.8 mW/cm2 is exhibited at the inlet water flow rate of 5 L/min, the inlet water temperature of 55oC, the hydrogen stoichiometric ratio of 1.5, the air stoichiometric ratio of 3.0, the air dew point temperature of 65oC. And the maximum power generating efficiency is up to 40.6 %.
    In addition, with increasing the inlet water temperature and decreasing the inlet water flow rate will decrease the charge transfer resistance because elevated stack temperatures improve the electrochemical reaction. However, the Ohmic resistance rises due to membrane dehydration at elevated stack temperatures. It is also noticed that the stack performance changes significantly with temperature operating conditions at low inlet water flow rates owing to significantly non-uniform temperature distributions over the stack. As a result, the inlet water temperature becomes a critical operational parameter at low inlet water flow rates.

    中文摘要 I 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI 符號 XIX 第1章 緒論 1 1-1 前言 1 1-2 研究動機 5 1-3 文獻回顧 6 1-4 研究目的 14 第2章 質子交換膜燃料電池簡介 15 2-1 質子交換膜燃料電池發電原理 15 2-2 質子交換膜燃料電池基本構造 19 第3章 實驗設備 25 3-1 燃料電池堆測試平台 26 3-1-1 CHINO 3kW 性能測試機 26 3-1-2 燃料氣體供應次系統 28 3-1-3 氣體增濕系統 30 3-1-4 KIKUSHI交流阻抗分析系統 31 3-2 水冷循環散熱系統 32 3-2-1 抽水馬達 33 3-2-2 浮子式流量計 34 3-2-3 熱交換器 35 3-3 水冷式燃料電池堆規格 36 3-3-1 膜電極組 38 3-3-2 石墨流道板 38 3-3-3 端板 40 3-3-4 UPE隔板 40 3-3-5 紅銅集電板 42 3-3-6 氣密墊圈 42 第4章 實驗理論與分析方法 44 4-1 極化曲線 44 4-1-1 活化極化現象 45 4-1-2 歐姆極化現象 47 4-1-3 濃度極化現象 48 4-2 定電流放電 49 4-3 電化學阻抗頻譜分析 50 4-3-1 EIS 阻抗分析方法 53 4-4 電池堆外圍溫度分佈之量測 55 4-5 實驗方法 56 4-5-1 實驗測試矩陣 56 4-5-2 交流阻抗分析 59 4-5-3 發電效率計算 60 4-6 實驗步驟 61 第5章 結果與討論 63 5-1 膜電極組活化和再現性測試 64 5-2 陰陽極氣體條件對燃料電池堆性能之影響 66 5-2-1 陽極氣體計量比對燃料電池堆性能之影響 66 5-2-2 陰極氣體計量比對燃料電池堆性能之影響 69 5-2-3 氣體增濕溫度對燃料電池堆性能之影響 72 5-3 入口水溫條件對燃料電池堆性能影響與阻抗分析 73 5-3-1 入口水溫對燃料電池堆性能之影響 73 5-3-2 入口水溫對燃料電池堆阻抗之分析 78 5-3-3 入口水溫變動過程中對燃料電池堆歐姆阻抗之分析 86 5-4 入口水流率條件對燃料電池堆性能影響與阻抗分析 92 5-4-1 入口水流率對燃料電池堆性能之影響 92 5-4-2 入口水流率對燃料電池堆各級電壓之影響 97 5-4-3 入口水流率對燃料電池堆阻抗之分析 105 5-4-4 入口水流率對燃料電池堆外圍溫度分佈之影響 112 5-5 發電效率 122 第6章 結論 123 第7章 未來工作 126 參考文獻 127

    [1] Squadrito, G., Giacoppo, G., Barbera, O., Urbani, F., Passalacqua, E., Borello, L., Musso, A., and Rosso, I., "Design and development of a 7kW polymer electrolyte membrane fuel cell stack for UPS application," International Journal of Hydrogen Energy, 2010, Vol. 35, pp.9983-9989.
    [2] Ferraro, M., Sergi, F., Brunaccini, G., Dispenza, G., Andaloro, L., and Antonucci, V., "Demonstration and development of a polymer electrolyte fuel cell system for residential use," Journal of Power Sources, 2009, Vol. 193, pp.342-348.
    [3] Corbo, P., Migliardini, F., and Veneri, O., "Experimental analysis and management issues of a hydrogen fuel cell system for stationary and mobile application," Energy Conversion and Management, 2007, Vol. 48, pp.2365-2374.
    [4] Van Dokkum, J., and Dasinger, A., "Meeting the challenges in the transport sector," Journal of Power Sources, 2008, Vol. 181, pp.378-381.
    [5] Corbo, P., Migliardini, F., and Veneri, O., "An experimental study of a PEM fuel cell power train for urban bus application," Journal of Power Sources, 2008, Vol. 181, pp.363-370.
    [6] Corbo, P., Migliardini, F., and Veneri, O., "PEMFC stacks as power sources for hybrid propulsion systems," International Journal of Hydrogen Energy, 2009, Vol. 34, pp.4635-4644.
    [7] Radulescu, M., Lottin, O., Feidt, M., Lombard, C., Noc, D.L., and Doze, S.L., "Experimental results with a natural gas cogeneration system using a polymer exchange membrane fuel cell," Journal of Power Sources, 2006, Vol. 159, pp.1142-1146.
    [8] 陳振源, "未來的綠色能源 – 燃料電池, "科學發展月刊 , 2005年七m月, 319期, pp.62-65.
    [9] Larminie, J., and Dicks, A., Fuel Cell Systems Explained. 2nd ed., John Wiley & Sons Ltd, 2003.
    [10] Vielstich, W., Lamm, A., and Gasteiger, H.A., Handbook of Fuel Cells : Fundamentals Technology and Applications, John Willy & Sons Ltd, 2003.
    [11] 黃鎮江, "燃料電池, "滄海書局, 2008年3月, pp.13.
    [12] Yan, X.Q., Hou, M., Sun, L.Y., Cheng, H.B., Hong, Y. L., Liang, D., Shen, Q., Ming, P.W., and Yi, B.L., "The study on transient characteristic of proton exchange membrane fuel cell stack during dynamic loading," Journal of Power Sources, 2007, Vol. 163, pp.966-970
    [13] Satish G. Kandlikar, and Zijie Lu., "Thermal management issues in a PEMFC stack – A brief review of current status, " Applied Thermal Engineering, 2009, Vol. 29 , pp1276-1280
    [14] Hwang,J.J.,Chang,W.R.,Weng,F.B.,Su,A., and Chen, C.K., "Development of a small vehicular PEM fuel cell system," International Journal of Hydrogen Energy, 2008, Vol. 33, pp.3801-3807.
    [15] Wu, J., Galli, S., Lagana, I., Pozio, A., Monteleone, G., Yuan, X.Z., Martin, J., and Wang, H., "An air-cooled proton exchange membrane fuel cell with combined oxidant and coolant flow," Journal of Power Sources, 2009, Vol. 188, pp.199-204.
    [16] Adzakpa, K.P., Ramousse, J., Dubé, Y., Akremi, H., Agbossou, K., Dostie, M., Poulin, A., and Fournier, M., "Transient air cooling thermal modeling of a PEM fuel cell," Journal of Power Sources, 2008, Vol. 179, pp.164-176.
    [17] López-Sabirón, A.M., Barroso, J., Roda, V., Barranco, J., Lozano, A., and Barreras, F., "Design and development of the cooling system of a 2 kW nominal power open-cathode polymer electrolyte fuel cell stack," International Journal of Hydrogen Energy, 2012, Vol. 37, pp.7289-7298.
    [18] Hashmi, S.M.H., "Cooling Strategies for PEM FC Stacks", Department of Mechanical Engineering, Helmut-Schmidt-Universität / Universität der Bundeswehr Ph.D thesis ‚2010.
    [19] Shimpalee, S., Ohashi, M., Van Zee, J.W., Ziegler, C., Stoeckmann, C., Sadeler, C., and Hebling, C., "Experimental and numerical studies of portable PEMFC stack," Electrochimica Acta, 2009, Vol. 54, pp.2899-2911.
    [20] 洪偉峰‚ "水冷式質子交換膜燃料電池堆設計及性能測試"‚ 國立成功大學航空太空工程研究所碩士論文 ‚2013年.
    [21] Zhang, G., and Kandlikar, S.G., "A critical review of cooling techniques in proton exchange membrane fuel cell stacks," International Journal of Hydrogen Energy, 2012, Vol. 37, pp.2412-2429.
    [22] Cheong, S., Kim, T., Kim, D., Lee, J., and Hwang, Y., "Analysis of water and thermal management with coolant operating conditions for a proton exchange membrane fuel cell," Current Applied Physics, 2010, Vol. 10, pp.S22-S25.(24)
    [23] Inoue, G., Yoshimoto, T., Matsukuma, Y., Minemoto, M., Itoh, H., and Tsurumaki, S., "Numerical analysis of relative humidity distribution in polymer electrolyte fuel cell stack including cooling water," Journal of Power Sources, 2006, Vol. 162, pp.81-93.
    [24] Tüber, K., Pócza, D., and Hebling, C., "Visualization of water buildup in the cathode of a transparent PEM fuel cell," Journal of Power Sources, 2003, Vol. 124, pp.403-414.
    [25] Asghari, S., Akhgar, H., and Imani, B.F., "Design of thermal management subsystem for a 5kW polymer electrolyte membrane fuel cell system," Journal of Power Sources, 2011, Vol. 196, pp.3141-3148.
    [26] Yu, S., and Jung, D., "Thermal management strategy for a proton exchange membrane fuel cell system with a large active cell area," Renewable Energy, 2008, Vol. 33, pp.2540-2548.
    [27] Jeon, D.H., "Numerical study of serpentine flow-field cooling plates on PEM fuel cells performance," International Journal of Energy Research, 2011.
    [28] Choi, J., Kim, Y.H., Lee, Y., Lee, K.J., and Kim, Y., "Numerical analysis on the performance of cooling plates in a PEFC," Journal of Mechanical Science and Technology, 2008, Vol. 22, pp.1417-1425.
    [29] Pe´rez-Page, M., and Pe´rez-Herranz, V., "Study of the electrochemical behavior of a 300 W PEM fuel cell stack by Electrochemical Impedance Spectroscopy, " International Journal of Hydrogen Energy, 2014, Vol. 39, pp.4009-4015.
    [30] 林昇佃, 余子隆, 張幼珍, 翁芳柏, 李碩仁, 林育才, 吳和生, 魏榮宗, 林修正, 賴子珍, 曾盛恕, 詹世弘, "燃料電池:新世紀能源," 滄海書局, 2004年.
    [31] Wu, J., Yuan, X.Z., Wang, H., Blanco, M., Martin, J.J., and Zhang, J., "Diagnostic tools in PEM fuel cell research: Part I Electrochemical techniques," Journal of Hydrogen Energy, 2008, Vol. 33, pp.1735–1746.
    [32] Nigam, A.K., Balasubramaniam, R., Bhargava, S., and Baligidad, R.G., "Electrochemical impedance spectroscopy and cyclic voltammetry study of carbon-alloyed iron aluminides in sulfuric acid," Corrosion Science, 2006, Vol. 48, pp 1666–1678.
    [33] Dale, N.V., Mann, M.D., Salehfar, H., Dhirde, A.M., and Han, T., "AC Impedance Study of a Proton Exchange Membrane Fuel Cell Stack Under Various Loading Conditions," Journal of Fuel Cell Science and Technology, 2010, Vol. 7, pp.31010–31020.
    [34] Kreuer, K.D., "On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells," Journal of Membrane Science, 2001, Vol. 185, pp.29-39.
    [35] Zhang, J.L., Tang, Y.H., Song, C.J., and Zhang, J.J., "Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120-200 degrees C," Journal of Power Sources, 2007, Vol. 172, pp.163-171.
    [36] Andreaus, B., McEvoy, A.J., and Scherer, G.G., "Analysis of performance losses in polymer electrolyte fuel cells at high current densities by impedance spectroscopy," Electrochim. Acta, 2002, Vol. 47, pp.2223–2229.
    [37] Yu, X., and Ye, S., "Recent Advances in Activity and Durability Enhancement of Pt/C Catalytic Cathode in PEMFC Part I. Physico-Chemical and Electronic Interaction between Pt and Carbon Support, and Activity Enhancement of Pt/C Caalyst, " Journal of Power Sources, 2007, Vol. 172, pp.133-144.
    [38] Lee, G.Y., Jung, M.k., Ryoo, S.N., Park, M.S., Ha, S.C., and Kim, S., "Development of cost innovative BPs for a PEMFC stack for a 1kW-class residential power generator (RPG) system," International Journal of Hydrogen Energy, 2010, Vol. 35, pp.13131-13136.
    [39] Li, X., and Sabir, I., "Review of bipolar plates in PEM fuel cells: Flow-field designs," International Journal of Hydrogen Energy, 2005, Vol. 30, pp.359-371.
    [40] 陳震宇, "溫度與溼度對PBI/H3PO4燃料電池特性影響之研究", 國立成功大學航空太空工程學系博士論文, 2010年.
    [41] EG&G Services Parsons, Inc. " Fuel Cell Handbook, 6th Edition, " November 2002.
    [42] Lynch, M.E., and Liu, M., "Investigation of sheet resistance in thin-film mixed-conducting solid oxide fuel cell cathode test cells," Journal of Power Sources, 2010, Vol. 195, pp.5155–5166.
    [43] Cunningham, N., Lef`evre, M., Lebrun, G., and Dodelet, J.P., "Measuring the through-plane electrical resistivity of bipolar plates," Journal of Power Sources, 2005, Vol.143, pp. 93–102.
    [44] Zhou, Y., Lin, G., Shih, A.J., and Hu, S.J., "A micro-scale model for predicting contact resistance between bipolar plate and gas diffusion layer in PEM fuel cells," Journal of Power Sources, 2007, Vol. 163, pp. 777–783.
    [45] Yuan, X., Sun, J.C., Blanco, M., and Wang, H., Zhang, J., Wilkinson, D.P., "AC impedance diagnosis of a 500W PEM fuel cell stack Part I: Stack impedance," Journal of Power Sources, 2006, Vol.161, pp. 920–928.
    [46] Schneider, I.A., Kuhn, H., Wokaun, A., and Scherer, G.G., "Fast Locally Resolved Electrochemical Impedance Spectroscopy in Polymer Electrolyte.
    [47] Dai, W., Wang, H., Yuan, X.Z., Martin, J., Luo, Z., and Pan, M., "Measurement of water transport rate in a proton exchange membrane fuel cell and the influence of the gas diffusion layer, " Journal of Power Sources ,2008, Vol. 185 , pp. 1267–1271.
    [48] Nishida, K., Yokoi, Y., Tsushima S., and Hirai, S., "Measurement of water distribution in anode of polymer electrolyte fuel cell under low humidity conditions," Proceedings of ASME 2009 Seventh International Fuel Cell Science, Engineering and Technology Conference, 2009
    [49] Jang, J.H., Chiu, H.C., Yan, W.M., and Sun, and W.L., "Effects of operating conditions on the performances of individual cell and stack of PEM fuel cell," Journal of Power Sources, 2008, Vol. 180, pp.476-483.
    [50] Chen, J., and Zhou, B., "Diagnosis of PEM fuel cell stack dynamic behaviors," Journal of Power Sources, 2008, Vol. 177, pp.83-95.
    [51] Koh, J.H., Hsu, A.T., Akay, H.U., and Liou, M.F., "Analysis of overall heat balance in self-heated proton-exchange-membrane fuel cells for temperature predictions," Journal of Power Sources, 2005, Vol. 144, pp.122-128.
    [52] Yuan, X., Sun, J.C., Blanco, M., Wang, H., Zhang, J., and Wilkinson, D.P., "AC impedance diagnosis of 500W PEM fuel cell stack Part I :Stack impedance," Journal of Power Sources, 2006, Vol. 161, pp. 920-928.
    [53] Park, Y.H., and Caton, J.A., "Development of a PEM stack and performance analysis including the effects of water content in the membrane and cooling method," Journal of Power Sources, 2008, Vol. 179, pp.584-591.
    [54] Matian, M., Marquis, A.J., and Brandon, N.P., "Application of thermal imaging to validate a heat transfer model for polymer electrolyte fuel cells," International Journal of Hydrogen Energy, 2010, Vol. 35, pp.12308-12316.
    [55] Baek, S.M., Yu, S.H., Nam, J.H., and Kim, C.J., "A numerical study on uniform cooling of large-scale PEMFCs with different coolant flow field designs," Applied Thermal Engineering, 2011, Vol. 31, pp.1427-1434.
    [56] Giddey, S., Ciacchi, F.T., and Badwal, S.P.S., "Design, assembly and operation of polymer electrolyte membrane fuel cell stacks to 1 kWe capacity," Journal of Power Sources, 2004, Vol. 125, pp.155-165.
    [57] Yu, S.H., Sohn, S., Nam, J.H., and Kim, C.J., "Numerical study to examine the performance of multi-pass serpentine flow-fields for cooling plates in polymer electrolyte membrane fuel cells," Journal of Power Sources, 2009, Vol. 194, pp.697-703.
    [58] Shimpalee, S., Ohashi, M., Van Zee, J.W., Ziegler, C., Stoeckmann, C., Sadeler, C., and Hebling, C., "Experimental and numerical studies of portable PEMFC stack," Electrochimica Acta, 2009, Vol. 54, pp.2899-2911.

    下載圖示 校內:2020-07-22公開
    校外:2020-07-22公開
    QR CODE