| 研究生: |
余俊翰 Yu, Chun-Han |
|---|---|
| 論文名稱: |
毫米波CMOS寬頻可變增益低雜訊放大器及使用前置失真線性器之94-GHz CMOS功率放大器 Millimeter-Wave CMOS Wideband Variable-Gain Low-Noise Amplifier and 94-GHz CMOS Power Amplifier with Built-in Pre-distortion Linearizer |
| 指導教授: |
莊惠如
Chuang, Huey-Ru |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 寬頻 、毫米波 、可變增益低雜訊放大器 、功率放大器 、前置失真線性器 |
| 外文關鍵詞: | wideband, millimeter-wave (MMW), variable-gain low-noise amplifier (VG-LNA), power amplifier (PA), pre-distortion linearizer |
| 相關次數: | 點閱:96 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研製毫米波CMOS寬頻可變增益低雜訊放大器及使用前置失真線性器之94-GHz CMOS功率放大器,採用TSMC CMOS 0.18-μm製程或90-nm GUTM製程進行設計。12–25 GHz CMOS寬頻可變增益低雜訊放大器以電流控制機制(current steering)來控制電晶體轉導值使其主體電流產生變化以達增益之調控;寬頻設計的部份則利用電阻式回授的方式並加上額外之電感、電容來做為匹配網路。50–67 GHz CMOS寬頻可變增益放大器此架構的可變增益設計以及寬頻設計的部份與12–25 GHz CMOS寬頻可變增益低雜訊放大器設計類似,主要差異為:此寬頻放大器中額外使用了增益強化(gain boosting)電感來增加整體的增益表現,同時額外多使用一個輸出緩衝器(test buffer)來作為輸出端的寬頻匹配元件與提升增益之用。使用前置失真線性器之94-GHz CMOS功率放大器設計上採用串接四級common-source (CS)的cascode架構來提高增益輸出以減輕PA前端輸入電路的負擔,而為加強電路的線性度特性,此架構使用一線性器來強化IP1dB特性,同時級間匹配採用能達到較小面積的匹配網路以利系統整合。電路設計以Agilent ADS與Ansoft 3-D全波電磁模擬軟體HFSS進行模擬,量測部分則是採用on-wafer方式進行,根據欲量測特性之不同,相關量測方式亦有所調整。
This thesis presents the research on millimeter-wave (MMW) CMOS wideband variable-gain low-noise amplifiers (VG-LNAs) and a 94-GHz CMOS power amplifier (PA) with built-in pre-distortion linearizer, implemented by standard TSMC 0.18-μm or 90-nm GUTM CMOS process. To obtaine wideband frequency response, the resistive-feedback skill with additional passive components is used as the matching network. In the 60-GHz VG-LNA design, a gain boosting inductor is used in order to obtain a better gain performance. In 94-GHz CMOS PA design, a four stage CS cascade structure is adopted for output gain enhancement. Futhermore, the linearity performance of designed PA such as IP1dB is improved by the built-in pre-distortion linearizer. The measured performances of the designed MMW CMOS RFICs are all performed by using the on-wafer measurement. Simulation and measurement results are compared and discussed.
[1] J. A. Howarth, A. P. Lauterbach, M. L. J. Boers, L. M. Davis, A. Parker, J. Harrison, J. Rathmell, M. Batty, W. Cowley, C. Burnet, L. Hall, D. Abbott, and N. Weste, “60 GHz radios: enabling next-generation wireless applications,” in Proc. TENCON 2005 region 10, Nov. 2005, pp. 1–6.
[2] RF atmospheric absorption / ducting [Online]. Available : http://www.tscm.com/rf_absor.pdf
[3] IEEE 802.15 Working Group for WPAN. [Online]. Available: http://www.ieee802.org/15
[4] B. Heydari, M. Bohsali, E. Adabi, and A. M. Niknejad, “Low-power mm-wave components up to 104 GHz in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig., Feb. 2007, pp. 200–201.
[5] Z. M. Tsai, M. C. Yeh, M. F. Lei, H. Y. Chang, C. S. Lin, and H. Wang, “FET-integrated CPW and the application in filter synthesis design method on traveling-wave switch above 100 GHz,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 5, pp. 2090–2097, May 2006.
[6] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. M. Niknejad, “A 94 GHz mm-Wave-to-Baseband Pulsed-Radar Transceiver with Applications in Imaging and Gesture Recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
[7] A. Arbabian, S. Callender, S. Kang, B. Afshar, J. –C. Chien, and A. M. Niknejad, “A 90 GHz Hybrid Switching Pulsed-Transmitter for Medical Imaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681, Dec 2010.
[8] P. –C. Huang, M. –D. Tsai, H. Wang, C. –H. Chen, and C. –S. Chang, “A 114GHz VCO in 0.13um CMOS Technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Paper, Feb. 2005, pp.404-405.
[9] R. S. P. Tam “CMOS variable gain amplifier,” term paper, University of Toronto, 2002.
[10] 歐雅文,毫米波CMOS次諧波降頻混頻器與低相位變化之可變增益放大器射頻晶片之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一百年。
[11] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[12] K. L. Feng, “Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications,” in IEEE Int. Solid-State Circuits Conf., Feb. 1999 pp. 224–225.
[13] J. Xiao, I. Mehr and J. Silva-Martinez “A high dynamic range CMOS variable gain amplifier for mobile DTV tuner,” IEEE J. Solid-State Circuits., vol. 42, pp. 292–301, Feb. 2007.
[14] C.-C. Kuo, Z.-M. Tsai, J.-H. Tsai, H. Wang, “A 71–76 GHz CMOS variable gain amplifier using current steering technique,” in IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2008, pp. 609–612.
[15] G. Gonzalez, Microwave Transistor Amplifiers, 2nd ed., Prentice Hall, Inc., 1997.
[16] T. Chang, J. Chen, L. A. Rigge, and J. Lin, “ESD-Protected wideband CMOS LNAs using modified resistive feedback techniques with chip-on-board packaging,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1817–1826, Aug. 2008.
[17] J.-H. C. Zhan and S. S. Taylor, “A 5 GHz resistive-feedback CMOS LNA for low-cost multi-standard applications,” in IEEE Int. Solid-State Circuit Conf. Dig., Feb. 2006, pp. 721–730.
[18] B. G. Perumana, J.-H. C. Zhan, S. S. Taylor, and J. Laskar, “A 0.5–6 GHz improved linearity, resistive feedback 90-nm CMOS LNA,” in Proc. IEEE Asian Solid-State Circuits Conf.,no. 2006, pp. 263–266.
[19] B. G. Perumana, J.-H. C. Zhan, S. S. Taylor, B. R. Carlton, and J. Laskar, “A 9.2mW, 4–8 GHz resistive feedback CMOS LNA with 24.4 dB gain, 2 dB noise figure, and 21.5 dBm output IP3,” in Proc. IEEE Topical Meeting Silicon Monolith, Integr. Circuits RF Syst., Jan. 2008, pp. 34–37.
[20] 鐘豪文,超寬頻UWB無線射頻收發機之寬頻CMOS RFICs的研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國九十五年。
[21] A. Ismail, and A. A. Abidi, “A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2269-2277, Dec. 2004.
[22] A. Bevilacqua, and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, Dec. 2004.
[23] H. -J. Lee, D. S. Ha, and S.S. Choi, ”A systematic approach to CMOS low noise amplifier design for ultrawideband applications,” in IEEE Int. Symp. on Circuits and Systems, vol. 4, pp. 3962-3965, May 2005.
[24] Y. –S. Lin, C. –Z. Chen, H. –Y. Yang, C. –C. Chen, J. –H. Lee, G. –W. Huang, and S. –S. Lu, “Analysis and Design of a CMOS UWB LNA With Dual-RLC-Branch Wideband Input Matching Network,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 287–296, Feb. 2010.
[25] F. Ellinger and H. Jäckel, “Low-Cost BiCMOS Variable Gain LNA at Ku-Band With Ultra-Low Power Consumption,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 702–708, Feb. 2004.
[26] S. -C Shin, S. –F. Lai, K. -Y Lin, M. –D. Tsai, H. Wang, C. –S. Chang, and Y. -C Tsai, “18-26 GHz Low-Noise Amplifiers Using 130- and 90-nm Bulk CMOS Technologies,” IEEE Radio Frequency Integrated Circuits (RFIC) Symp, Jun. 2005, pp. 47–50.
[27] V. Jain, S. Sundararaman, and P. Heydari, “A CMOS 22–29 GHz receiver front-end for UWB automotive pulse-radars,” IEEE Custom Intergrated Circuits Conf, pp. 757–760, Sep. 2007.
[28] H.-Y. Yang, Y.-S. Lin, and C.-C. Chen, “0.18 μm 21–27 GHz CMOS UWB LNA with 9.3±1.3 dB gain and 103.9+8.1 ps group delay,” Electron. Lett., vol. 44, no. 17, pp. 1014–1016, Aug. 2008.
[29] M. El-Nozahi, E. Sanchez-Sinencio, and K. Entesari, “A millimeterwave(23–32 GHz) wideband BiCMOS low noise amplifier,” IEEE J.Solid-State Circuits, vol. 45, no. 2, pp. 289–299, Feb. 2010.
[30] M. –H. Tsai, Shawn S. H. Hsu, F. –L. Hsueh, and C. –P. Jou, “ESD-Protected K-Band Low-Noise Amplifiers Using RF Junction Varactors in 65-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3455–3462, Dec. 2011.
[31] B. Seo and S. Jeon, "An 18–32 GHz Ultra Wideband Low-Noise Amplifier with a Low Variation of Group Delay," in Proc. IEEE Int. Microw. Symp., May 2010, pp. 489–492.
[32] H. –H. Hsieh, P.-Y. Wu, C. –P. J., F. –L. Hsueh, and G. –W. Huang "60GHz High-Gain Low-Noise Amplifiers with a Common-Gate Inductive Feedback in 65nm CMOS," IEEE Radio Frequency Integrated Circuits (RFIC) Symp., June 8–10, 2011.
[33] S. Shekhar, J. S. Walling, and D. J. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits, vol. 41, no. 11, pp. 2424-2439, Nov. 2006.
[34] C. Weyers, P. Mayr, J. W. Kunze, and U. Langmann, “A 22.3 dB voltage gain 6.1 dB NF 60 GHz LNA in 65 nm CMOS with differential output,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2008,pp. 192–606.
[35] A. Natarajan, S. Nicolson, M.-D. Tsai, and B. Floyd, “A 60 GHz variable-gain LNA in 65 nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2008, pp. 117–120.
[36] C.-C. Chen, Y.-S. Lin, P.-L. Huang, J.-F. Chang, and S.-S. Lu, “A 4.9 dB NF 53.5–62 GHz micro-machined CMOS wideband LNA with small group-delay-variation,” in Proc. IEEE Int. Microw. Symp., May 2010, pp. 489–492.
[37] Y.-K. Hsieh and J.-L. Kuo, H. Wang and L. –H. Lu, “A 60 GHz Broadband Low-Noise Amplifier WithVariable-Gain Control in 65 nm CMOS” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 610–612, Nov. 2011.
[38] Steve C. Cripps, “RF Power Amplifiers for Wireless Communications,” 2nd ed., Artech House, 2006.
[39] 張盛富,張嘉展,“無線通訊射頻晶片模組設計-射頻晶片篇,” 全華科技,2008。
[40] B. Razavi, “RF Microelectronics,” 2nd ed., Prentice Hall, Inc., 1998.
[41] 廖哲宏,應用於IEEE 802.11a WLAN之5.7 GHz CMOS 射頻接收機及功率放大器RFICs,成功大學電腦與通信工程研究所碩士論文,民國九十二年。
[42] D. M. Pozar, Microwave Engineering, 3rd ed., John Wiley and Sons, Inc., 2005.
[43] C.-Y. Law, and A.-V. Pham, “A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., pp. 426–427, 7-11 Feb. 2010.
[44] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, +14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 9, pp. 1901–1908, Sep. 2005.
[45] J.-H Tsai, C.-H. Wu, H.-Y. Yang and T. –W. Huang “A 60 GHz CMOS Power Amplifier With Built-in Pre-Distortion Linearizer,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 676–678, Dec.2011.
[46] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang, “Design and analysis of a 44 GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487–2496, Jun. 2006.
[47] Jiang, Y. S. et al.: ‘A 86-to-108 GHz amplifier in 90nm CMOS’, IEEE Microwave and Wireless Components Letters, pp. 124-126, Feb. 2008.
[48] Deferm, N. et al.: ‘A 94GHz differential power amplifier in 45nm LP CMOS’, IEEE Radio Frequency Integrated Circuits (RFIC) Symp., pp. 1-4, June. 2011.
[49] 郭信智,應用於60-GHz CMOS毫米波射頻接收機前端電路之研製,國立成功大學電腦與通信工程研究所碩士論文,民國九十七年。
[50] N. O. Sokal, and A. D. Sokal, “Class E–A new class of high-efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. sc-10, no. 3, pp. 168–176, Jun. 1975.
[51] C. -H. Yu, P. -H. Lo, J. -Y. Lyu, H. -C. Kuo, and H. -R. Chuang, “Integrated 60-GHz CMOS variable-gain low-noise amplifier and full 360° phase shifter for phased-array RF receiving system,” in Proc. IEEE Radio Wireless Symp. pp. 59 – 61, Jun. 2014.
[52] Y. Wu, S. –C. Huang, C. –H. Yu, W. –Y. Ruan and H. -R Chuang, “60-GHz CMOS artificial magnetic conductor on-chip 2×2 monopole - antenna phased array RF receiving system with integrated variable-gain low-noise amplifier and phase shifter,” in Proc. IEEE Int. Microw. Symp., Jun 2014, pp. 1–3.
[53] R. J. Langley, and A. J. Drinkwater, “An improved empirical model for the Jerusalem cross,” IEEE Proc. H, Microwaves, Opt. & Antennas, vol. 129, pp. 1-6, Feb., 1982.
[54] M. K. T. Al-Nuaimi, and W. G. Whittow, “Low profile dipole antenna backed by isotropic Artificial Magnetic Conductor reflector,” in Proc. IEEE Eur Conf on Antennas and Propagation (EuCAP),. pp. 1 – 5, Apr. 2010.
[55] A. E. I. Lamminen, A. R. Vimpari, and J. Saily, “UC-EBG on LTCC for 60-GHz Frequency Band Antenna Application,” IEEE Trans. Antennas Propag., vol. 57, no. 10, Oct., 2009.
[56] F. Yang, and Y. Rahmat-Samii, “Reflection Phase Characterization of the EBG Ground Plane for Low Profile Wire Antenna Application,” IEEE Trans. Antenna Propag., vol. 51, pp. 2691-2703, Oct. 2003.
[57] C. R. Simovski, P. de Maagt, and I. V. Melchakova, “High-Impedance Surface Having Stable Resonance with Respect to Polarization Incidence Angle,” IEEE Trans. Antennas Propag., vol. 53, no. 3, Mar., 2005.
[58] X. Y. Bao, Y. X. Guo and Y. Z. Xiong, “60-GHz AMC-Based Circularly Polarized On-Chip Antenna Using Standard 0.18-μm CMOS Technology,” IEEE Trans. Antennas Propag., vol. 60, no. 5, May, 2012.
[59] C. A. Balanis, Antenna Theory and Design, 3rd ed. New York: Wiley, 2005
[60] W. Shin, O. Inac, Y.C. Ou, B. Ku, and G. M. Rebeiz, “A 108-114 GHz 4x4 Wafer-Scale Phased Array Transmitter with High-Efficiency On-Chip Antennas,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2041–2055, Sep. 2013.
[61] 王惠弘,15-28 GHz CMOS 寬頻低雜訊放大器及60-GHz 非接觸式人體呼吸心跳訊號感測系統之低雜訊放大器/IQ混頻器電路之研製,國立成功大學電腦與通信工程研究所碩士論文,民國一零一年。
[62] 郭奇昕,毫米波CMOS高隔離度射頻收發開關及功率放大器研製,國立成功大學電腦與通信工程研究所碩士論文,民國一零一年。