簡易檢索 / 詳目顯示

研究生: 黃國芳
Huang, Kuo-Fang
論文名稱: 有孔蟲殼體微量元素比與穩定同位素組成:南海之校正與古海洋應用
Trace Element Ratios and Stable Isotopic Compositions of Planktonic Foraminiferal Shell collected from the South China Sea:Geochemical Calibration and Paleoceanographic Implication
指導教授: 游鎮烽
You, Chen-Feng
學位類別: 博士
Doctor
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 247
中文關鍵詞: 微量元素比南海同位素
外文關鍵詞: Trace element ratio, South China Sea, Isotope
相關次數: 點閱:83下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Long-term climatic and environmental reconstruction from marine sediments relies heavily on the reliable geochemical proxies from foraminiferal shells. Therefore, the aim of this dissertation is to improve our understanding and confidence in planktonic foraminiferal proxies as indicators of seawater physical (e.g., sea surface temperature, SST) and chemical (e.g., composition and pH value) properties. Toward this goal, natural laboratory calibration works of foraminiferal shell chemistry have been carried out by using specimens collected from sediment traps and core-top sediments in the South China Sea (SCS).
    First of all, high-precision and high-accurate measurements on trace element ratios, boron and strontium isotopic compositions in planktonic foraminifera were investigated, and have been successfully developed for carbonate samples (CHAPTER 2). This technique would allow us to obtain more reliable trace elements and isotopic compositions in foraminiferal shell calcites, and provides a powerful tool to study the paleoceanographic reconstructions in the SCS. Applying this analytical technique, in situ Mg/Ca-SST calibration equation for the three abundant planktonic species in the SCS can be described as Mg/Ca = 0.32 exp (0.090*T) using time-series sediment trap, and intense dissolution artifact has also been taken into account for obtaining more accurate SST records (CHAPTER 3). In addition, a dissolution-corrected equation was developed using trap data from different depths. These temperature equations are Mg/Ca= (0.38-0.02* water depth (km)) exp (0.090*T) and Mg/Ca= 0.30 exp (0.090*T) for fall-winter and spring-summer season, respectively. These equations can be applied for accurate reconstruction of mixed layer and thermocline temperatures in sediment cores.
    Changes in the local SST and freshwater budget over the last 22 kyrs have been reconstructed from the tropical SCS (CHAPTER 4). Through the comparison of the east-west (zonal) SST gradient between western and eastern Pacific, a persistent ENSO-like pattern can be seen during the Last Glacial Maximum (LGM). This is contrasted with mid-Holocene cooling suggest a La Niña-like pattern with enhanced SST gradients and strengthened trade winds. Low salinity in the northern SCS during the LGM probably reflects an increase in freshwater inputs from several emerged rivers across the Sunda Shelf during glacial shelf exposure. Alternatively, an influence by the closure of the southern straits would cut off the inflow of high saline waters from the Indo-Pacific into the SCS cannot be excluded. For the thermal structure of the upper water column, Mg/Ca-based temperature variability reconstructed by three different planktonic species shows a strong mixing during the LGM, and becomes more stratified during the Holocene. Combining with shell chemistry, the covariation of Mg/Ca and Ba/Ca over the last 220 kyrs indicates a variation in the continental input associated with the glacial-interglacial changes.
    Results from core-top sediments in the SCS demonstrate that B/Ca ratios in the three planktonic foraminiferal species are strongly affected by seawater temperature and pH (CHAPTER 5). Species-specific foraminiferal B/Ca ratios from core-top sediments are in equilibrium with ambient seawater [B(OH)4-/HCO3-] in response to their habitat depths in the modern water column, indicating shell B/Ca can be used as a reliable paleo-pH proxy by applying the dissolution-corrected Mg/Ca-derived SST and KD of B/Ca. The pH and pCO2 reconstructions at Site 1145 indicate that the variability of surface-ocean pCO2 shows a more variability than atmospheric CO2 records, and the ocean-atmosphere CO2 flux has substantially changed with time in the SCS. The pCO2 (or pH) in glacial surface waters was approximately 150 ppmv lower (or 0.3 pH units higher) than the Holocene. This amplitude in surface-water pCO2 is significantly larger than changes in atmospheric pCO2 recorded in the ice cores (~ 90 ppmv). This observation indicates that this area was a strong CO2 sink to the atmosphere at the LGM, and presumably reflects a significant increase in regional primary productivity in the north SCS during the LGM.
    The B isotopic analyses presented here have been successfully developed, and extend its potential applications for various natural samples, including seawaters, pore waters and biogenic carbonates (CHAPTER 6). For the natural seawaters, 11B shows a rather homogeneous distribution in the open ocean (11B= 39.6±0.2‰), but slightly negative 11B value can be determined in the coastal ocean (11B= 38.6±0.3‰). This can be attributed to the influence of riverine inputs (averaged 11B= +10‰, [Lemarchand et al., 2000]) with substantially lighter 11B relative to seawater. B and 11B in pore fluids collected from the southern Okinawa Trough and South China Sea show a complicated distribution pattern with depths, indicating distinct geochemical processes or admixtures of fluids with various source end-members of B were involved in different geological settings. Because of the large variability of B (200-2000 M) and 11B (+32-+51‰) in pore fluids, the approach using foraminiferal 11B to estimate pH into long-term and short-term timescale needs to be interpreted cautiously due to potential influences of diagenetic processes that reacted with the surrounding sediment pore waters.
    The result also indicates that the recovery yields of B extraction by microsublimation is close to 100%, and shows that a precise determination of B isotopic ratios is possible for coral skeletons and foraminiferal shells. This advance would offer an opportunity to evaluate the empirical calibration of 11B/pH, and further refine the relationship between surface water pCO2 and atmospheric CO2 level in short- and long-term timescales.
    The first detailed observations of Sr isotopic compositions (Sr ICs) in surface and vertical seawater profiles in the SCS and around Taiwan were investigated through the high-precision Sr isotopic measurement (CHAPTER 7). Combining results of Sr ICs, T, S and δ18O, we have found that Sr ICs are distributed rather complicated and in-homogeneously both in vertical (Δ87Sr variation >40 ppm) and surface (>50 ppm) distributions after a heavy flood event. In the Kao-ping river-sea system, the surface Sr ICs were affected by mixing of three end-members water masses: two episodic continental runoffs with radiogenic Sr ICs and a modified SCSSW. The two radiogenic sources were most likely resulted from: (1) unusual inputs of radiogenic Sr due to typhoon disturbance in the upper stream (i.e., top soils or ambient rocks), (2) intense water/sediment interaction in seawater column in response to heavy rainfalls, or (3) normal river discharge plume into the coastal zone. Vertical Δ87Sr profiles along the Kao-ping canyon show large isotopic variations in the upper most 200 m, possibly were affected by continental runoffs (e.g., Kao-ping River: Δ87Sr~ 5500 ppm) and local seawater masses. Below 200 m, Sr ICs gradually become radiogenic while decreasing distance toward river mouth and reflect relatively high contribution of terrestrial inputs.
    Sr isotopic composition in planktonic foraminifera shows a species dependency, but is independent of pre-cleaning method, and is in equilibrium with ambient seawater Sr isotopes. The results presented here strongly suggest that the use of foraminiferal Sr isotopes for reconstructing seawater 87Sr/86Sr ratios with time. A small, but significant variation of about 40 ppm in the seawater 87Sr/86Sr can be found in the SCS, and seems to follow a cycle to the previously reported 100-kyr cycle. This periodicity can be linked to one of the prominent cycles in the Earth’s orbital parameters, which are known to modulate the patterns of solar insolation and climate. On this short timescale these changes are most likely be controlled by variations in the riverine Sr input.

    CHAPTER 1. Introduction 1.1 General Background and Motivation....................2 1.2 Biomineralization in Foraminifera...................11 1.3 Trace Element Ratios in Planktonic Foraminifera.....14 1.4 Stable Isotopic Compositions of Planktonic Foraminifera............................................17 CHAPTER 2. Methods 2.1 High Resolution ICP-MS (HR-ICP-MS) 2.1.1 Instrumentation...............................23 2.1.2 Spectral interference.........................24 2.1.3 Matrix-induced mass discrimination............28 2.1.4 Precision and accuracy........................33 2.2 Thermal Ionization Mass Spectrometry (TIMS) 2.2.1 Instrumentation...............................35 2.2.2 Ionization process............................36 2.2.3 Isobaric interference.........................37 2.2.4 Analysis protocols for boron isotope..........38 2.2.5 Analysis protocols for strontium isotope......43 2.3 Foraminiferal Methods 2.3.1 Sample selection..............................46 2.3.2 Cleaning procedure for foraminiferal shell calcite.......................................51 2.3.3 Efficiency of cleaning method.................53 2.4 Seawater and Pore waters Methods 2.4.1 Sample selection.............................57 2.4.2 Measurements on concentrations of major, minor and trace elements......................................59 2.5 Conclusions.........................................59 References CHAPTER 3. In situ Calibration of Mg/Ca Ratio in Planktonic Foraminiferal Shell using Time-series Sediment Trap: A case study of intense dissolution artifact in the South China Sea 3.1 Introduction.........................................64 3.2 Previous Paleoceanographic Studies...................66 3.3 Modern Hydrography of the SCS........................67 3.4 Materials and Methods 3.4.1 Sediment trap deployment.......................68 3.4.2 Foraminiferal cleaning analysis................69 3.4.3 Estimates of habitat mean temperature and salinity.................................................72 3.5 Sediment Trap Results 3.6 Discussion 3.6.1 Inter-species foraminiferal Mg/Ca.............76 3.6.2 Partition coefficient for Mg..................78 3.6.3 Intra-annual Mg/Ca-d18O relationship..........79 3.6.4 In situ Mg/Ca-SST calibration.................81 3.6.5 Effect of partial dissolution on shell chemistry.............................................. 84 3.6.6 Other environmental factors on foraminiferal Mg/Ca...................................................89 3.7. Comparison of Existing Calibrations 3.7.1 Comparison of the multi-species calibration...92 3.7.2 Comparison of species-specific calibrations...94 3.7.3 Comparison of reconstructed SST records in the SCS.....................................................94 3.8 Conclusions.........................................96 References CHAPTER 4. Reconstructions of Paleo-SSTs and Paleo-climatic changes in the South China Sea 4.1 Introduction........................................105 4.2 Materials and Methods...............................106 4.3 Results and Discussion 4.3.1 High-resolution Mg/Ca-SST variability across Termination I...........................................108 4.3.2 Deglacial patterns in Tropical Pacific SST in ice age.................................................110 4.3.3 d18Oseawater variations in the northern SCS across Termination I....................................112 4.3.4 Thermal structure of the upper ocean over the last 60 kyrs............................................114 4.3.5 Paleo-SST variation over the last 220 kyrs....................................................116 4.3.6 Reconstruction of continental inputs using Ba/Ca in N. dutertrei.......................................117 4.4 Conclusions.......................................118 References CHAPTER 5. Reconstruction of changes in surface water pCO2 in tropical South China Sea using foraminiferal multi-proxy approach 5.1 Introduction.....................................123 5.2 Materials and Methods 5.2.1 Sediment locations.........................125 5.2.2 Modern hydrographic properties.............127 5.2.3 Foraminiferal cleaning method..............128 5.2.4 Foraminiferal shell chemistry analysis.....129 5.3 Results 5.3.1 Core-tops Mg/Ca and B/Ca...................130 5.3.2 Down-core record from the South China Sea..132 5.4 Discussion 5.4.1 Dissolution effects on Mg/Ca and B/Ca......132 5.4.2 Core-tops calibration of planktonic foraminiferal B/Ca...................................134 5.4.3 Estimation of pH and pCO2 from foraminiferal B/Ca.................................................138 5.4.4 Uncertainties in estimating pH and pCO2....141 5.4.5 Comparison with U/Ca-derived pH estimates..141 5.5 Paleoceanographic Implication 5.5.1 Paleo-pH variability in the northern SCS across Termination I........................................143 5.5.2 Past surface-ocean pCO2 records in the SCS.145 5.6 Conclusions......................................148 References CHAPTER 6. Boron Isotopic Compositions in Seawater and Planktonic Foraminifera: Calibration and Paleo-application 6.1 Introduction.......................................155 6.2 Reagents and laboratory equipment..................159 6.3 Column Chemistry 6.3.1 The characteristics of Amberlite IRA 743.....161 6.3.2 Chemical procedure...........................162 6.3.3 Removal of organic matter....................164 6.4 Results and Discussion 6.4.1 Boron recovery study.........................165 6.4.2 Boron isotopic composition of seawater.......165 6.4.3 Boron isotopic composition of pore fluid.....168 6.4.4 Boron isotopic composition of biogenic carbonates.............................................176 6.5 Conclusions........................................179 References CHAPTER 7. Strontium Isotopic Composition in Seawater and Planktonic Foraminifera: Calibration and Paleo-application 7.1 Introduction.......................................186 7.2 Reagents and Laboratory Equipment..................189 7.3 Column Chemistry 7.3.1 The characteristics of Sr-spec resin.........190 7.3.2 Chemical procedure...........................191 7.4 Results and Discussion 7.4.1 Strontium recovery study.....................192 7.4.2 Strontium isotopic compositions of seawater..193 7.4.3 Strontium isotopic compositions of planktonic foraminifera...........................................203 7.4.4 Glacial-interglacial changes in seawater 87Sr/86Sr ratios.......................................205 7.5 Conclusions........................................207 References APPENDIX 1. Supplementary Data APPENDIX 2. Curriculum Vitae

    Anand, P., Elderfield, H., Conte M. H., 2003. Calibration of Mg/Ca thermometry in planktonic foraminifera from sediment trap time series. Paleoceanography 18, 1050- 1065.
    Al-Ammar, A., Gupta, R. K., Barnes, R. M., 1999. Elimination of boron memory effect in inductively coupled plasmas-mass spetrometry by addition of ammonia. Spectrochim. Acta Part B 54, 1077-1084.
    Alibo, D. S., Nozaki, Y., 2000. Dissolved rare earth elements in the South China Sea: Geochemical characterization of the water masses. J. Geophys. Res. 105, C12, 28771-28783.
    Andersson, P. S., Wasseerburg, G. J., Ingri, J., Stordal, M. C., 1994. Strontium, dissolved particulate loads in fresh and brackish waters: the Baltic Sea and Mississippi Delta. Earth Planet. Sci. Lett. 124, 195-210.
    Barker, S., Elderfield, H., 2002. Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science, 297, 833-836.
    Barth, S., 1997. Boron isotopic analysis of natural fresh and saline waters by negative thermal ionization mass spectrometry. Chem. Geol. 143, 255-261.
    Barth, S., 2000. Geochemical and boron, oxygen, and hydrogen isotopic constraints on the origin of salinity in groundwaters from the crystalline basement of the Alpine Foreland. Applied Geochem. 15, 937-952.
    Basu, A. R., Jacobsen, S. B., Poreda, R. J., Dowling, C. B., Aggarwal, P. K., 2001. Large groundwater strontium flux to the oceans from the Bengal Basin and the marine strontium isotope record. Science 293, 1470-1473.
    Bé, A. W. H., 1980. Gametogenic calcification in a spinoso planktonic foraminifer Globigerinoides sacculifer (Brady). Mar. Micropaleont. 5, 283-310.
    Bé, A. W. H., 1982. Biology of planktonic foraminifera. In: Foraminifera: Notes for a short course. Studies in Geology Vol. 6. Broadhead TW (ed) Univ. Tenn. Knoxville 51-92.
    Bé, A. W. H., Hemleben, C., Anderson, O. R., Spindler, M., Hacunda, J., Tunitivate-Choy, S., 1977. Laboratory and field observation of living planktonic foraminifera. Micropaleont. 23, 155-179.
    Bemis, B. E., Spero, H. J., Bijma, J., Lea D. W., 1998. Reevaluation of the oxygen isotopic composition of planktonic foraminifer: Experimental results and revised paleotemperature equations. Paleoceanography 13, 150-160.
    Bentov, S., Erez, J., 2005. Novel observations on biomineralization processes in foraminifera and implications for Mg/Ca ratio in the shells. Geology 33, 841-844.
    Bentov, S., Erez, J., 2006. Impact of biomineralization processes on the Mg content of foraminiferal shells: A biological perspective. Geochem. Geophys. Geosys. 7, doi:10.1029/2005GC001015.
    Birck, J. L., Roy Barman, M., Capmas, F., 1997. Re-Os isotopic measurements at the femtomole level in natural samples. Geostandard Newsletter: The Journal of Geostandards and Geoanalysis 21, 19-27.
    Boyle, E. A., Keigwin, L. D., 1985/1986. Comparison of Atlantic and Pacific paleochemical records for the last 215, 000 years: Changes in deep ocean circulation and chemical inventories. Earth Planet. Sci. Lett. 76, 135-150.
    Boyle, E. A., 1988. The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide. J. Geophys. Res. 15701-15714.
    Broecker, W. S., Peng T.-H. , 1982. Tracers in the Sea, Eldigio Press, New York.
    Broecker, W. S., Patzert, W. C., Toggweiler, J. R., Stuiver, M., 1986. Hydrography, chemistry, and radioisotopes in the southeastern Asian basins. J. Geophys. Res. 91, 14345- 14354.
    Broecker, W. S., 1997. Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science 278, 1582-1588.
    Brumsack, H., Zuleger, E., 1992. Boron and boron isotopes in pore waters from ODP Leg 127, Sea of Japan. Earth Planet Sci. Lett. 113, 427-433.Boyle, E. A., Keigwin, L. D., 1982. Deep circulation of the North Atlantic over the last 200,000 years: Geochemical evidence. Science 218, 784-787.
    Burke, W. H. Denison, R. E., 1982. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology 10, 516-519.
    Chen, C.-T. A., Wang, S.-L., Chou, W.-C., Sheu, D. D., 2006. Carbonate chemistry and projected future changes in pH and CaCO3 saturation of the SCS. Marine Chem. 101, 277-305.
    Capo, R. C., DePaolo, D. J., 1990. Seawater strontium isotopes variation from 2.5 million yearsto present. Science 249, 51-55.
    Capo, R. C., DePaolo D. J., 1992. Homogeneity of Sr Isotopes in the Oceans. EOS Transactions of the AGU 73, 272.
    Chen, C.-T. A., Ruo, R., Pai, S. C., Li, C. T., Wong, G. T. F., 1995. Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan. Cont. Shelf Research 15, 19-39.
    Chu, P. C., Fan, C., Lozano, C. J., Kerling, J. L., 1998. An airborne expendable bathy- thermography survey of the South China Dea, May, 1995. J. Geophys. Res. 103, 21637-21652.
    Clemens, S. C., Farrell, F. W., Gromet L. P., 1993. Synchronous changes in seawater strontium isotope composition and global climate. Nature 363, 607-610.
    Chou, W. C., Sheu, D. D., Chen, C.-T. A., Wang, S. L., Tseng, C. M., 2005. Seasonal variability of carbon chemistry at the SEATs time series site, northern South China Sea between 2002 and 2003. T. A. O. 16, 445-465.
    Clark, D., Hobart, D. E., Neu, M. P., 1995. Actinide carbonate complexes and their importance in actinide environmental chemistry. Chem. Rev., 95, 25-48.
    Cuffey, K. M., Vimeux, F., 2001. Covariation of carbon dioxide and temperature from Vostok ice core after deuterium-excess correction. Nature 412, 523-527
    Deniel, C., Pin, C., 2001. Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Anal. Chim. Acta 426, 95-103.
    Deyhle, A., Kopf, A., Eisenhauer, A., 2001. Boron systematics of authigenic carbonates: A new approach to identify fluids processes in accretionary prisms. Earth Planet. Sci. Lett. 187, 191-205.
    Deyhle, A., Kopf, A., 2001. Deep fluids and ancient pore waters at the backstop: Stable isotope systematics (B, C, O) of mud-volcano deposits on the Mediterranean Ridge accretionary wedge. Geology 29, 1031-1034.
    Deyhle, A., Kopf, A., 2002. Strong B enrichment and anomalous δ11B in pore fluids from the Japan Trench forearc. Marine Geol. 183, 1-15.
    Deyhle, A., Kopf, A., Frape, S., Hesse, R., 2004. Evidence for fluid flow in the Japan Trench forearc using isotope geochemistry (Cl, Sr, B): Results from ODP Site 1150. The Island Arc 13, 258-270.
    Dia, A. N., Cohen, A. S., O’Nions, R. K. Shackleton N. J., 1991. Seawater Sr- isotope variations over the last 300ka and global climate change. Nature 356, 786-789.
    Dickson, A. G., Millero, F. J., 1987. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res. Part A 34, 1733-1743.
    Dickson, A. G., 1990. Thermodynamics of the dissociation of boric-acid in synthetic seawater from 273.15-k to 318.15k. Deep Sea Res. Part A 37, 755-766.
    Djogic, R., Sipos, L., Branica, M., 1986. Characterization of uranium (VI) in seawater. Limnol. Oceanogr. 31, 1122-1131.
    DOE., 1994. Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater. Version 2. Dickson, A. G., and Goyet, C., editors. ORNL/CDIAC-74.
    Elderfield, H., Ganssen G., 2000. Reconstruction of temperature and δ18O of surface ocean waters using Mg/Ca of planktonic foraminiferal calcite. Nature 405, 442-445.
    Emiliani, C., 1955. Pleistocene temperatures. J. Geol. 63, 538-578.
    Epstein, S., Buchsbaum, R., Lowenstam, H. A., Urey, H. C., 1953. Revised carbonate-water temperature scale. Bull. Geol. Soc. Am. 64, 1315-1326.
    Erez, J., 2003. The source of ions for biomineralization in foraminifera and their implications for paleoceanographic proxies. Reviews in mineralogy and Geochemistry 54, Biomineralization, 115-149.
    Falkowski, P. G. et al., 2000. The global carbon cycle: A test of our knowledge of earth as a system. Science 290, 291-296.
    Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., Millero, F. J., 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362-366.
    Fischer, H., Wahlen, M., Smith, J., Mastroianni, D, Deck, B., 1999. Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283, 1712-1714.
    Fitts, T. G., Brown, K. M., 1999. Stress induced smectite dehydration remifications for patterns of freshening fluid expulsion in the N. Barbados accretionary wedge. Earth Planet. Sci. Lett. 172, 179-197.
    Gäbler, H., Bahr, A., 1999. Boron isotopic ratio measurements with a double-focusing magnetic sector ICP mass spectrometer for tracing anthropogenic input into surface and ground water. Chem. Geol. 156, 323-330.
    Gaillardet, J., Allegre, C. J., 1995. Boron isotopic composition of corals: Seawater or diagenesis record? Earth Planet Sci. Lett. 136, 665-676.
    Gaillardet, J., Lemarchand, D., Go¨pel, C., Manhe`s, G., 2001. Evaporation and sublimation of boric acid: application for boron purification from organic rich solutions. Geostand. Newsl. 25 Ž1., 67–75.
    Galy, A., France-Lanord, C., Derry, L. A., 1999. The strontium isotopic budget of Himalayan rivers in Napal and Bangladesh. Geochim. Cosmochim. Acta 63, 1905-1925.
    Grossman, E. L., 1987. Stable isotopes in modern benthic foraminifera: A study of vital effect. J. Foramin. Res. 17, 48-61.
    Huh, Y., Edmond, J. M., 1998. On the interpretation of the oceanic variations in 87Sr/86Sr recorded in marine limestones. Proc. Indian Acad. Sci. 107, 293-305.

    Hedley, R. H., Adam, C. G., 1978. Foraminifera. Vol. 3. Academic Press, London.
    Hemleben, C., Spindler, M., Anderson, O. R., 1989. Modern Olanktonic Foraminifera. Spring-Verlag, New York.
    Hemming, N. G., Hanson, G. N., 1992. Boron isotopic composition and concentration in modern carbonates. Geochim. Cosmochim. Acta 56, 537-543.
    Hemming, N. G., Hanson, G. N., 1994. A procedure for the analysis of boron by thermal ionization mass spectrometry. Chem. Geol. 114, 147-156.
    Hemming N. G., Guilderson T. P., Fairbanks R. G., 1998. Seasonal variations in the boron isotopic composition of a coral: A productivity signal? Global Biogeochem. Cy. 12, 581–586.
    Henderson, G. M., Martel, D. J., O’Nions R. K., Shackleton, N. J., 1994. Evolution of seawater 87Sr/86Sr over the past 400 ka: the absence of glacial/interglacial cycles. Earth Planet. Sci. Lett. 128, 643-651.
    Hershey, J. P., Fernandez, M., Milne, P. J., Millero, F. J., 1986. The ionization of boric acid in NaCl, Na-Ca-Cl, and Na-Mg-Cl solution at 25˚C. Geochim. Cosmochim. Acta 50, 143-148.
    Hess, J., Bender, M. L., Schilling, J-G., 1986. Evolution of the ratio of strontium-87 to strontium-86 in seawater from Cretaceous to present. Science 231, 979–984.
    Higginson, M. J., Maxwell, J. R., Altabet, M. A., 2003. Nitrogen isotope and chlorine paleoproductivity records from the northern South China Sea: Remote vs. local forcing of millennium- and orbital-scale variability. Marine Geol. 201, 223-250.
    Hodell, D. A., Mead, G. A., Mueller, P. A., 1990. Variations in the strontium isotopic composition of seawater (8Ma to present) implications for chemical weathering rates and dissolved fluxes to the oceans. Chem. Geol. 80, 291-307.
    Hönisch, B., Hemming, N. G., 2004. Ground-truthing the boron isotope-paleo-pH proxy in planktonic foraminifera shells: Partial dissolution and shell size effects. Paleoceanography 19, doi:10.1029/2004PA001026.
    Hönisch, B., Hemming, N. G., 2005. Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet. Sci. Lett. 236, 305-314.
    Horwitz, E. P., Dietz, M. L., Fisher, D. E., 1991. Anal. Chem. 63, 522.
    Horwitz, E. P., Chiarizia, R., Dietz, M. L., Solvent Extr. Ion Exch. 10, 313
    Huang K.-F., You C.-F., 2007. Tracing Freshwater Plume Migration in the Estuary after a Typhoon Event using Sr Isotopic Ratios. Geophysical Research Letters 34, L02403, doi:10.1029/2006GL028253.
    Huang, K.-F., You, C.-F., Lin, H.-L., Shieh, Y. T., 2007. In situ calibration of Mg/Ca ratio in planktonic foraminiferal shell using time-series sediment trap: A case study of intense dissolution artifact in the South China Sea. (Submitted to Geochem. Geophys. Geosyst).
    Ingram, B. L., Sloan D., 1992. Strontium isotopic composition of estuarine sediments as Paleosalinity and Paleoclimate Indicator. Science 255, 68-72.
    Ishikawa, T., Nakamura, E., Boron isotope systematics of marine sediments. Earth Planet. Sci. Lett. 117, 567-580.
    Kakihana, H., Kotoka, M., Shohei, S., Nomura, M., Okamota, M., 1977. Fundamental studies on the ion-exchange separation of boron isotopes. Bull. Chem. Soc. Jpn. 50, 158-163.
    Kano, I., Darbouret, D., 1999. Ultrapure water for boron and silica sensitive laboratory Applications. The R $ D Notebook, Millipore.
    Kastner, M., Kvenvolden, K. A., Whiticar, M. J., Camerlenghi, A., Lorenson, T. D., 1995. Relation between pore fluids chemistry and gas hydrates associated with bottom simulating reflectors at thr Cascadia Margin, Site 889 and Site 892. Proceeding of the ODP, Sci. Results 146, 175-187.
    Kienast, M., Calvert, S. E., Pelejero, C., Grimalt, J. O., 2001. A critical review of marine sedimentary 13Corg-pCO2 estimates: New palaeo-records from the South China Sea and a revisit of the other low-latitude 13Corg-pCO2 records. Global Biogeochem. Cycles 15, 113-127.
    Kienast, M., Hanebuth, T. J., Pelejero, C., Steinke, S., 2003. Synchrononeity of meltwater pulse 1a and the Bøiling warming: New evidence from the South China Sea. Geology 31, 67-70.
    Kiss, E., 1988. Ion exchange separation and spectrophotometric determination of boron in geological materials. Anal. Chim. Acta 211, 243–256.
    Kohler-Rink, S., Kuhl, M., 2000. Microsensor studies of photosynthesis and respiration in large symbiotic foraminifera. The physico-chemical microenvironment of Marginopora vertebralis, Amphistegina lobifera and Amphisorus hemprichii. Mar. Biol.137, 473-486.
    Kohler-Rink, S., Kuhl, M., 2001. Microsensor studies of photosynthesis and respiration in large symbiont bearing foraminifera, Amphistegina lobifera and Amphisorus hemprichii. Ophelia 55, 111-122.
    Kopf, A., Deyhle, A., Zuleger, E., 2000. Evidence for deep fluid circulation and gas hydrate dissociation using boron and boron isotopes of pore fluids in forearc sediments from Costa Rica (ODP Leg 170). Marine Geol. 167, 1-28.
    Kopf, A., Deyhle, A., 2002. Back to the roots: boron geochemistry of mud volcanoes and its implications for mobilization depth and global B cycling. Chem. Geol. 192, 195-210.
    Kuile, B., Erez, J., 1987. Uptake of inorganic carbon and internal carbon cycling in symbiont-bearing benthic foraminifera. Mar. Biol. 94, 499-510.
    Lacan F., Jeandel, C., 2001. Tracing papua New Guinea imprint on the central Equatorial Pacific Ocean using neodymium isotopic compositions and Rare Earth Element patterns. Earth Planet. Sci. Lett. 186, 497-512.
    Langer, M. R., 1992. Biosynthesis of glycosaminoglycans in foraminifera: a review. Mar. Micropaleont. 19, 245-255.
    Lea, D. W., Boyle E. A., 1993. Determination of carbonate-bound barium in corals and foraminifera by isotope dilution plasma mass spectrometry. Chem. Geol. 103, 73-84.
    Lea, D. W., 1999. Trace elements in foraminiferal calcite. Modern Foraminifera, 259-277. Hemming, G. N., Hanson, G. N., 1992. Boron isotopic composition and concentration in modern carbonates. Geochim. Cosmochim. Acta 56, 537-543.
    Lea, D. W., Pak, D. K., Spero, H. J., 2000. Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 289, 1719-1724.
    Leeman, W.P., Vocke, R.D., Bearly, E.S., Paulsch, P.J. P., 1991. Precise boron isotopic analysis of aqueous samples ion exchange extraction and mass spectrometry. Geochim. Cosmochim. Acta 55, 3901–3907.
    Lemarchand, D., Gaillardet, J., Lewin, E., Allegre, C. J., 2000. The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408, 951-954.
    Lemarchand, D., Gaillardet, J., Lewin, E., Allegre, C. J., 2002. An optimized procedure for boron separation and mass sprectrometry for river water samples. Chem. Geol. 182, 323-334.
    Lewis, E., Wallace, D. W. R., 1998. Program developed for CO2 system calculations, Rep. ORNL/CDIAC-105, Carbon Dioxide Ind. Anal. Cent. Oak Ridge Natl. Lab. U. S. Dept. of Energy, Oak Ridge, Tenn.
    Lin, H.-L., Wang, W.-C., Hung, G.-W., 2004. Seasonal variation of planktonic foraminiferal isotopic composition from sediment traps in the South China Sea. Mar. Micropaleontol. 53, 447-460.
    Li, L., Nowlin, W. D., Lilan, S., 1998. Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Res. Part I 45, 1469-1482.
    Lin, I.-T., Wang, C.-H., Lin, S., 2003. Seasonal variations of oxygen isotopic compositions in the Pingtung coastal waters of Taiwan. Western Pacific Earth Science 3, 21-32.

    Mehrbach, C., Culberso, C. H., Hawley, J. E., Pytkowic, R. M., 1973. Measurement of apparent dissociation-constants of carbonic-acid in seawater at atmospheric- pressure. Limnol. Oceanogr. 18, 897-907.
    Moore, W. S., 1996. Large groundwater inputs to coastal waters revealed by 226Ra enrichments. Nature 380, 612-614.
    Morse, J. W., Bender, M. L., 1990. Partition coefficients in calicite: Examination of factors influencing the validity of experimental results and their application to natural systems. Chem. Geol. 82, 265-277.
    Mucci, A., Morse, J. W., 1990. Chemistry of low-temperature abiotic calcites: experimental studies on coprecipitation, stability and fractionation. Aquatic Sci. 2, 217-254.
    Nitani, H., 1972. Beginning of the Kuroshio, in Kuroshio, edited by H. Stommel and Y. Yoshida, pp. 129-163. Univ. of Wash. Press, Seattle.
    NODC (Levitus) World Ocean Atlas 1998. Provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA.
    Olivares, J. A., Houk, R. S., 1986. Anal. Chem. 58, 20.
    O’Neil, J. R., R. N. Clayton, and T. K. Mayeda, Oxygen isotope fractionation in divalent metal carbonates, The Journal of Chemical Physics, 51, 5547-5558, 1969.
    Oppo, D. W., Sun, Y., 2005. Amplitude and timing of sea-surface temperature change in the northern South China Sea: Dynamic link to the East Asian Monsoon. Geology 33, 785-788.
    Ortiz, J. D., Mix, A. C., Rugh, W., 1996. Deep-dwelling planktonic foraminifera of the northeastern Pacific Ocean reveal environmenta; control of oxygen and carbon isotopic disequilibria. Geochim. Cosmochim. Acta 60, 4509-4523.
    Pak, D. K., Lea, D. W., Kennett, J. P., 2004. Seasonal and interannual variation in Santa Barbara Basin water temperatures observed in sediment trap foraminiferal Mg/Ca. Geochem. Geophys. Geosyst. 5, doi:10.1029/2004GC000760.
    Palmer, M. R., Edmond, J. M., 1989. The strontium isotope budget of the modern ocean. Earth Planet. Sci. Lett. 92, 11-26.
    Palmer, M. R., Swihart, G. R., 1996. Boron isotope geochemistry: an overview. In: Crew, E. S., Anovitz, L. M. (Eds.), Boron: Mineralogy, Petrology and Geochemistry. Mineral. Soc. Am., 33, 709-744.
    Palmer, M. R., Pearson, P. N., Cobb, S. J., 1998. Reconstructing past ocean pH-depth profiles. Science 282, 1468-1471.
    Palmer, M. R., Pearson, P. N., 2003. A 23,000-year record of surface water pH and pCO2 in the western Equatorial Pacific Ocean. Science 300, 480-482.
    Pearson, P. N., Palmer, M. R., 1999. Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science 284, 1824-1826.
    Pearson, P. N., Palmer, M. R., 2000. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695-699.
    Pelejero, C., Grimalt, J. O., Heilig, S., Kienast, M., Wang, L., 1999. High resolution Uk37-temperature reconstructions in the South China Sea over the last 220 kyrs. Paleoceanography 14, 224-231.
    Pelejero, C. et al., 2004. Preindustrial to modern interdecadal variability in coral reef pH. Science 309, 2204-2207.
    Pelletier, G. E., Lewis, E., Wallace, D., 2005. A calculator for the CO2 system in seawater for Microsoft Excel/VBA, report, Wash. State Dept. of Ecol., Olympia.
    Petit, J. R. et al., 1999. Climatic and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429-436.
    Pinon, F., Deson, J., Rosset, R., 1968. Proprie´te´s de la re´sine e´changeuse d’ions spe´cifique du bore amberlite XE 243. Bull. Soc. Chim. Fr. 8Ž535., 3454–3461.
    Qu, T., Mitsudera, H., Yamagata, T., 2000. Intrusion of the North Pacific waters into the South China Sea. J. Geophys. Res. 105, 6415-6424.
    Raven, J. A., Falkowski, P. G., 1999. Oceanic sinks for atmospheric CO2. Plant. Cell and Environment 22, 741-755.
    Raymo, M. E., 1991. Geochemical evidence supporting T. C. Chamberlin’s theory of glaciation. Geology 19, 344-347.
    Reeder, R. J., Nugent, M. L., Lamble, G. M., Tait, C. D., Morris, D. E., 2000. Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environ. Sci. Technol. 34, 638-644.
    Richter, F. M., Rowley, D. R., DePaolo, D. J., 1992. Sr isotope evolution of seawater: the role of tectonics. Earth Planet. Sci. Lett. 109, 11-23.
    Robb, J. M., 1984. Spring sapping on the lower continental slope, offshore New Jersey. Geology 12, 278-282.
    Rohling, E., Cooke, S., 1999. Stable oxygen and carbon isotopes in foraminiferal carbonate shells. Modern Foraminifera, 239-258.
    Rose, E. F., Chaussidon, M., France-Lanord, C., 2000. Fractionation of boron isotopes during erosion processes : The example of Himalayan rivers. Geochim. Cosmochim. Acta 64, 397-408.
    Rosenthal, Y., Boyle, E. A., Slowey. N., 1997. Environmental controls on the incorporation of Mg, Sr, F and Cd into benthic foraminifera shells from Little Bahama Bank: Prospects for thermocline paleoceanography. Geochim. Cosmochim. Acta 61, 3633-3643.
    Rosenthal, Y., Field, M. P., Sherrell, R. M., 1999. Precise determination of element/calcium ratios in calcareous sample using sector field inductivity coupled plasma mass spectrometry. Anal. Chem., 71, 3248-3253.
    Rosenthal, Y., Lohmann, G. P., Lohmann, K. C., Sherrell, R. M., 2000. Incorporation and preservation of Mg in Globigerinoides sacculifer: Implication for reconstructing the temperature and 18O/16O of seawater. Paleoceanography 15, 135-145.
    Rosenthal, Y., Lohman, G. P., 2002. Accurate estimation of sea surface temperatures using dissolution- corrected calibrations for Mg/Ca paleotemperature. Paleoceanography 17, 3, 1044.
    Russell, A. D., Emerson, S. R., Nelson, B. K., Erez, J., Lea, D. W., 1994. Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations. Geochim. Cosmochim. Acta 58, 671-681.
    Russell, A. D., Emerson, S., Mix, A. C., Peterson, L. C., 1996. The use of foraminiferal U/Ca as an indicator of changes in seawater U content. Paleoceanography 11, 649-663.
    Russell, A. D., Hönisch, B., Spero, H. J., Lea, D. W., 2004. Effects of seawater carbonate ion concentration and temperature on shell U, Mg, and Sr in cultured planktonic foraminifera. Geochim. Cosmochim. Acta 68, 4347-4361.
    Salisbury, M. H., Shinohara, M., Richter, C., 2002. Site 1202. Proceeding of the ODP, Init. Reports 195.
    Sample, J. C., Kopf, A., 1995. Occurrences and geochemistry of syntectonic carbonate cements and veins from ODP Leg 146: Implications for hydrogeologica evolution of the Cascadia margin. Proceeding of the ODP, Sci. Results 146, 137-150.
    Sanyal, A., Hemming, N. G., Hanson, G. N., Broecker, W. S., 1995. Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373, 234-236.
    Sanyal, A., Hemming, N. G., Broecker, W. S., Lea, D. W., Spero, H. J., Hanson, G. N., 1996. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments. Paleoceanography 11, 513-517.
    Sanyal, A., Hemming, N. G., Broecker, W. S., Hanson, G. N., 1997. Changes in pH in the eastern equatorial Pacific across stage 5-6 boundary based on boron isotopes in foraminifera. Global Biogeochem. Cycles 11, 125-133.
    Sanyal, A., Bijma, J., 1999. A comparative study of the northwest Africa and eastern equatorial Pacific upwelling as a source of CO2 during glacial periods based on boron isotope paleo-pH estimation. Paleoceanography 14, 753-759.
    Sanyal, A., Bijma, J., Spero, H. J., Lea, D. W., 2001. Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: Implications for the boron isotope paleo-pH proxy. Paleoceanography 16, 515-519.
    Sigman, D. M., Boyle, E. A., 2000. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859-869.
    Shackleton, N. J., 1974. Attainment of isotopic equilibrium between ocean water and the benthic foraminiferal genus Uvigerina: Isotopic changes in the ocean during the last glacial, Cent. Natl. Rech. Sci. Colloq. Int. 219, 203-209.
    Shackleton, N. J., Opdyke, N. D., 1973. Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatures and ice volumes on a 105 and 106 years scale. Quarter. Res. 3, 39-55.
    Shackleton, N. J., 1974. Attainment of isotopic equilibrium between ocean water and the benthic foraminiferal genus Uvigerina: Isotopic changes in the ocean during the last glacial. Cent. Natl. Rech. Sci. Colloq. Int. 219, 203-209.
    Shackleton, N. J., 1977. 13C in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles, in Fate of Fossil Fuel CO2 in the oceans, Plenum, New York, 401-427.
    Shannon, 1976. Revised effective ionic radii. Acta crystallog. A32, 751-767.
    Shaw, P.-T., 1991. The seasonal variation of the intrusion of the Phillippine Sea Water into the South China Sea. J. Geophys. Res. 96, 821-827.
    Speer, J. A., 1983. Crystal chemistry and phase relations of orthorhombic carbonates, in carbonates: Mineralogy and Chemistry, (ed R. J. Reeder), Mineralogical society of America, Washington, D. C., 145-190.
    Spivack, A. J., Edmond, J. M., 1986. Determination of boron isotope ratios by thermal ionization mass spectrometry of dicesium metaborate cation. Anal. Chem. 58, 31-35.
    Spivack, A. J., Edmond, J. M., 1987. Boron isotope exchange between seawater and oceanic crust. Geochim. Cosmochim. Acta 51, 1033-1043.
    Spivack, A. J., Palmer, M. R., Edmond, J. M., 1987. The sedimentary cycle of the boron isotopes. Geochim. Cosmochim. Acta 51, 1939-1949.
    Spivack, A. J., You, C.-F., Smith, H. J., 1993. Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr. Nature 363, 149-151.
    Spero, H. J., Parker, S. L., 1985. Photosynthesis in the symbiotic planktonic foraminifer Orbulina universa and its potential contribution to oceanic primary productivity. J. Foram. Res. 15, 273-281.
    Spero, H. J., 1988. Ultrastructural examination of chamber morphogenesis and biomineralization in the planktonic foraminifera Orbulina universa. Mar. Biol. 99, 9-20.
    Spero, H. J., Lea, D. W., 1993. Intraspecific stable isotope variability in the planktonic foraminifera Globigerinoides sacculifer: results from laboratory experiments. Mar. Micropaleont. 22, 221-234.
    Spero, H. J., Lea, D. W., 1996. Experimental determination of stable isotope variability in Globigerina bulloides: implications for paleoceanographic reconstructions. Mar. Micropaleont. 28, 231-246.
    Spero, H. J. et al., 1997. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390, 497-500.
    Steinke, S., Chiu, H.-Y., Yu, P.-S., Shen, C.-C., Erlenkeuser, H., Löwemark, L., Chen, M.-T., 2006. On the influence of sea level and monsoon climate on the southern South China Sea freshwater budget over the last 22,000 years. Quaternary Science Reviews 25, 1475-1488.
    Stoll, H. M., Schrag, D. P., 1998. Effects of Quaternary sea level cycles on strontium in seawater. Geochim. Cosmochim. Acta 62, 1107-1118.
    Stoll, H. M., Schrag, D. P., Clemens S. C., 1999. Are seawater Sr/Ca variations preserved in Quaternary foraminifera ? Geochim. Cosmochim. Acta 63, 3535-3547.
    Takahashi, T. et al., 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research II 49, 1601-1622.
    Tanner, S. D., Douglas, D. J., French, J. B., 1994. Appl. Spectrosc. 48, 1373.
    Trenberth, K. E. et al., 1998. J. Geophys. Res. 103, 14291.
    Thomas, R., 2001. A beginner’s Guide to ICP-MS Part VII: Mass Separation Devices- Double-Focusing Magnetic –Sector Technology. Spectroscopy 16, 22-24.
    Thomas, R., 2002. A beginner’s Guide to ICP-MS Part XII: A review of Interferences. Spectroscopy 17, 24-31.
    Thomas, H., Bozec, Y., Elkalay, K., de Baar, H. J. W., 2004. Enhanced open ocean storage of CO2 from shelf sea pumping. Science 304, 1005-1008.
    Tomczak, M., Godfrey, J. S., 1994. Regional Oceanography: An introduction. Pergamon, Oxford, p. 422.
    Urey, H. C., 1947. The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581.
    Vengosh, A., Chivas, A. R., McCulloch, M. T., 1989. Direct determination of boron and chlorine isotopic compositions in geological materials by negative thermal-ionization mass spectrometry. Chem. Geol. 79, 333-343.
    Vengosh, A., Chivas, A. R., McCulloch, J. M., Stainsky, A., Kolodny, Y., 1991. Boron isotope geochemistry of Australian salt lakes. Geochim. Cosmochim. Acta 55, 2591-2606.
    Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heiling, S., Ivanova, E., Kienast, M., Pelejero, C., Pflaumann, U., 1999. East Asian monsoon climate during the Late Pleistocene: high-resolution sediment records from the South China Sea. Mar. Geol. 156, 245-284.
    Wara, M. W., Delaney, M. L., Bullen, T. D., Ravelo, A. C., 2003. Possible roles of pH, temperature, and partial dissolution in determinating boron concentration and isotopic composition in planktonic foraminifera. Paleoceanography 18, doi:10.1029/2002PA000797.
    Weaver, C. E., 1989. Clays, Muds, and Shales. Development in Sedimentology 44. Elsevier.
    Weiner, S., Erez, J., 1984. Organic matrix of the shell of the foraminifer. Heterostegina depressa. J. Foramin. Res. 14, 206-212.
    Wiedenbeck, M., 2001. Boron and oxygen isotope composition of certified reference
    materials NIST SRM 610/612 and reference materials JB-2 and JR-2. Geostandards Newsletter 25, 405-416.
    Williams, L. B., Hervig, R. L., Holloway, J. R., Hutcheon, I., 2001. Boron isotope geochemistry during diagenesis. Part I. Experimental determination of fractionation during illization of smectite. Geochim. Cosmochim. Acta 65, 1769-1782.
    Winter, B. L., Clark, D. L., Johnson C. M., 1997. Late Cenozoic Sr isotope evolution of the Artic Ocean: constraints on water mass exchange with the lower latitude oceans. Deep-Sea Res. II 44, 1531-1542.
    Wyrtki, K., 1961. Physical Oceanography of the Southeast Asian Waters, in Scientific Results of Marine Investigations of the South China Sea and the Gulf of Thailand, NAGA Rep., vol. 2, 195 pp., Scripps Instit. of Oceanogr., La Jolla, Calif.
    You, C.-F., Spivack, A. J., Smith, J. H., Gieskes, J. M., 1993a. Mobilization of boron in convergent margins: Implications for the boron geochemical cycle. Geology 21, 207-210.
    You, C.-F., Gieskes, J. M., Chen, R. F., Spivack, A. J., Gamo, T., 1993b. Iodide, bromide, manganese, boron, and dissolved organic carbon in interstitial of organic carbon-rich marine sediments: Observations in Nankai accretionary prism. Proceeding of the ODP, Init. Reports 131, 165-174.
    You, C.-F., Morris, J. D., Gieskes, J. M., Rosebauer, R., Zheng, S. H., Xu, X., Ku, T.-L., Bischoff, J. L., 1994. Mobilization of Be in sedimentary column at convergent margins. Geochim. Cosmochim. Acta 58, 4887-4897.
    You, C.-F., Chan, L.-H., Spivack, A. J., Gieskes, J. M., 1995. Lithium, boron, and their isotopes in sediments and pore waters of Ocean Drilling Program Site 808, Nankai Trough: implications for fluid expulsion in accretionary prisms. Geology 23, 37-40.
    You, C.-F., Spivack, A. J., Gieskes, J. M., Martin, J. B., Davisson, M. L., 1996. Boron contents and isotopic compositions in pore waters: a new approach to determine temperature induced artifacts- geochemical implications. Marine Geol. 129, 351-361.
    You, C.-F., Castillo, P. R., Gieskes, J. M., Chan, L. H., Spivack, A. J., 1996. Trace element behavior in hydrothermal experiments: Implications for fluid processes at shallow depths in subduction zones. Earth Planet Sci. Lett. 140, 41-52.
    Yu, J., Elderfield, H., Hönisch, B., 2007. B/Ca in planktonic foraminifera as a proxy for surface seaawater pH. Paleoceanography 22, doi:10.1029/2006PA001347.
    Zeebe, R. E., Wolf-Gladrow, D. A., 2001. CO2 in seawater: Equilibrium, kinetics, isotopes. Elsevier Oceanography Series 65. Elsevier. p. 346.
    Zhu, Y., Huang, Y., Matsumoto, R., Wu, B., 2003. Geochemical and stable isotopic compositions of pore fluids and authigenic siderite concretions for Site 1146, ODP Leg 184: Implication for gas hydrate. Proceeding of the ODP, Sci. Results 184.

    下載圖示 校內:2010-08-09公開
    校外:2012-08-09公開
    QR CODE