簡易檢索 / 詳目顯示

研究生: 章景榮
Chang, Ching-Jung
論文名稱: 以氧化鎵擔載於外表面與嵌置於孔道內之奈米碳管合成介孔ZSM-5與其於甲醇轉化為芳香烴之應用
Ga-supported MFI zeolites synthesized using carbon nanotubes containing gallium oxide on exterior walls and in interior channels as hard templates for methanol aromatization
指導教授: 林裕川
Lin, Yu-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 91
中文關鍵詞: ZSM-5奈米碳管甲醇芳香族
外文關鍵詞: gallium, ZSM-5, CNTs, MTA, aromatics
相關次數: 點閱:59下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以擔載氧化鎵奈米粒子於奈米碳管外表面與嵌置於孔道內作為硬模板,並結合蒸氣輔助結晶法來製備介孔Ga/ZSM-5觸媒。透過一系列的觸媒物化性鑑定,比較發現使用這兩種硬模板製備的介孔Ga/ZSM-5觸媒,其結晶度、介孔性及鎵的共價配位環境皆很相似。但是以嵌置GaOx於孔道內之奈米碳管作為硬模板的Ga/ZSM-5,因其內部的GaOx比擔載於外表面上的GaOx具有較低的可還原性,於鍛燒時較容易產生揮發性的Ga+ 蒸氣,使其所擔載的(GaO)+濃度提高並具備較強的路易斯酸強度。
    此外,與原始ZSM-5相比,發現以嵌置GaOx於孔道內之奈米碳管作為硬模板來合成觸媒,其布朗斯特酸的濃度可以被完好的保存下來。因此進而增強GaO+與布朗斯特酸之間的協同效應,而提升甲醇轉芳香化反應之活性及芳香烴之選擇率,且經由不同反應條件下測試觸媒活性後發現其芳香族產率明顯遠高於其他方法所合成觸媒,且觸媒壽期也略微提升。

    A combinative approach of steam-assisted crystallization and hard templating was employed to prepare mesostructured Ga/ZSM-5 catalysts. Carbon nanotubes (CNTs) containing gallium oxide nanoparticles supported on the exterior surface and confined in the inner space were used as the templates. A comparative study showed that by using these two templates, the crystallinities, mesoporosities, and Ga coordination environments of mesostructured Ga/ZSM-5 catalysts were similar. However, a stronger strength of Lewis acid of Ga/ZSM-5 was obtained using the GaOx-encapsulated CNTs as the template. Encapsulated GaOx was less reducible than those supported on the exterior surface of CNTs, resulting in an increased concentration of isolated (GaO)+. Moreover, compared to pristine ZSM-5, the concentration of Brønsted acid was nearly intact by using GaOx-encapsulated CNTs as the templates. A better methanol aromatization performance was achieved by the Ga/ZSM-5 made by using GaOx-encapsulated CNTs.

    摘要 I 英文摘要 II 致謝 IX 表目錄 XIII 圖目錄 XIV 第一章 前言 1 第二章 文獻回顧 3 2.1 沸石觸媒特性 3 2.2 甲醇轉芳香化之反應機制 8 2.3 沸石觸媒改質的研究 14 第三章 實驗 19 3.1 比表面積及孔徑分析儀 19 3.2 X光繞射儀(XRD) 20 3.3 感應耦合電漿質譜分析儀(ICP-MS) 22 3.4 高解析度掃描式電子顯微鏡(HR-SEM) 23 3.5 高解析度穿透式電子顯微鏡(HR-TEM) 24 3.6 固態核磁共振(NMR) 25 3.7 紅外線吸收光譜(FTIR) 27 3.7.1 觸媒之紅外線吸收光譜 29 3.7.2 吡啶吸附之紅外線吸收光譜 29 3.8 自動式化學吸脫附儀 30 3.8.1 氫氣程序升溫還原(H2-TPR) 32 3.8.2 氨氣程序升溫脫附(NH3-TPD) 32 3.8.3 異丙胺程序升溫脫附(Isopropylamine-TPD) 33 3.9 X射線光電子能譜(XPS) 35 3.10 X射線吸收光譜(XAS) 36 3.11 熱重分析儀(TGA) 38 3.12 氣相層析儀(GC) 39 3.13 產物之定性與定量分析 41 3.14 藥品與實驗設備 43 3.15 觸媒合成與製備 46 3.15.1 ZSM-5之製備 46 3.15.2 氧化鎵於外表面及孔道內部Ga/CNT之製備 46 3.15.3 以Ga/CNT為模板的多級孔Ga/ZSM-5之製備 47 3.15.4 Ga/ZSM-5之觸媒製備 47 3.15.5 觸媒連續氧化還原預處理 48 3.16 觸媒反應性與壽期測試 48 第四章 結果與討論 50 4.1 物理性質鑑定 50 4.1.1 奈米碳管(CNTs)之熱重分析 50 4.1.2 觸媒之結晶性鑑定(XRD) 51 4.1.3 觸媒組成分析(ICP-AES) 52 4.1.4 硬模板材料與觸媒表面形貌鑑定(SEM與TEM) 53 4.1.5 觸媒氮氣等溫吸附與脫附曲線(BET) 55 4.1.6 觸媒27Al NMR之鑑定 58 4.1.7 觸媒29Si NMR之鑑定 59 4.1.8 觸媒之紅外光譜 60 4.2 化學性質鑑定 61 4.2.1 X射線吸收光譜 61 4.2.2 觸媒氨氣及異丙胺程溫脫附(NH3-TPD,IPA-TPD) 63 4.2.3 觸媒吸附吡啶之紅外光譜(Pyridine-IR) 66 4.2.4 觸媒氫氣程溫還原(H2-TPR) 67 4.2.5 觸媒X射線光電子能譜(XPS) 70 4.2.6 觸媒於甲醇轉芳香化反應之結果 72 4.2.7 觸媒壽期與穩定性測試 78 第五章 結論 80 參考資料 81

    1. Fahim, M.A., T.A. Al-Sahhaf, and A. Elkilani, Fundamentals of petroleum refining. 2009: Elsevier.
    2. Olah, G.A., Beyond oil and gas: the methanol economy. Angewandte Chemie International Edition, 2005. 44(18): p. 2636-2639.
    3. Choudhary, V., et al., Characterization of coke on H-gallosilicate (MFI) propane aromatization catalyst.: Influence of coking conditions on nature and removal of coke. Microporous and Mesoporous Materials, 1998. 21(1-3): p. 91-101.
    4. Obert, R. and B.C. Dave, Enzymatic conversion of carbon dioxide to methanol: Enhanced methanol production in silica sol− gel matrices. Journal of the American Chemical Society, 1999. 121(51): p. 12192-12193.
    5. Yao, C., W. Pan, and A. Yao, Methanol fumigation in compression-ignition engines: A critical review of recent academic and technological developments. Fuel, 2017. 209: p. 713-732.
    6. Khanmohammadi, M., et al., Methanol-to-propylene process: Perspective of the most important catalysts and their behavior. Chinese Journal of Catalysis, 2016. 37(3): p. 325-339.
    7. Wang, K., et al., Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics. Catalysis Science & Technology, 2017. 7(3): p. 560-564.
    8. Feliczak-Guzik, A., Hierarchical zeolites: Synthesis and catalytic properties. Microporous and Mesoporous Materials, 2018. 259: p. 33-45.
    9. Corma, A., From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical reviews, 1997. 97(6): p. 2373-2420.
    10. Schmidt, I., et al., Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001. 13(12): p. 4416-4418.
    11. Flores, C., et al., Direct Production of Iso‐Paraffins from Syngas over Hierarchical Cobalt‐ZSM‐5 Nanocomposites Synthetized by using Carbon Nanotubes as Sacrificial Templates. ChemCatChem, 2018. 10(10): p. 2291-2299.
    12. Chen, Y.-Y., et al., Gallium-immobilized carbon nanotubes as solid templates for the synthesis of hierarchical Ga/ZSM-5 in methanol aromatization. Industrial & Engineering Chemistry Research, 2019. 58(19): p. 7948-7956.
    13. Liu, H., et al., A comparison study of mesoporous Mo/H-ZSM-5 and conventional Mo/H-ZSM-5 catalysts in methane non-oxidative aromatization. Fuel Processing Technology, 2012. 96: p. 195-202.
    14. Tzeng, Y.-Z., et al., Zn-based metal–organic frameworks as sacrificial agents for the synthesis of Zn/ZSM-5 catalysts and their applications in the aromatization of methanol. Catalysis Today, 2020.
    15. Pan, D., et al., A highly active and stable Zn@ C/HZSM-5 catalyst using Zn@ C derived from ZIF-8 as a template for conversion of glycerol to aromatics. Catalysis Science & Technology, 2019. 9(3): p. 739-752.
    16. Wang, C., et al., Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels. Journal of Materials Chemistry, 2008. 18(47): p. 5782-5786.
    17. Chen, W., X. Pan, and X. Bao, Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. Journal of the American Chemical Society, 2007. 129(23): p. 7421-7426.
    18. Shahhosseini, H.R., et al., Multi-objective optimisation of steam methane reforming considering stoichiometric ratio indicator for methanol production. Journal of Cleaner Production, 2018. 180: p. 655-665.
    19. Weitkamp, J., Zeolites and Catalysis. Solid state ionics, 2000. 131(1-2): p. 175-188.
    20. Csicsery, S.M., Shape-selective catalysis in zeolites. Zeolites, 1984. 4(3): p. 202-213.
    21. Wang, H. and M. Frenklach, Transport properties of polycyclic aromatic hydrocarbons for flame modeling. Combustion and Flame, 1994. 96(1): p. 163-170.
    22. Jae, J., et al., Investigation into the shape selectivity of zeolite catalysts for biomass conversion. Journal of Catalysis, 2011. 279(2): p. 257-268.
    23. Stöcker, M., Methanol-to-hydrocarbons: catalytic materials and their behavior. Microporous and Mesoporous Materials, 1999. 29(1): p. 3-48.
    24. Chang, C.D., A.J. Silvestri, and R.L. Smith, Production of gasoline hydrocarbons. 1975, Google Patents.
    25. Chang, C.D. and A.J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts. Journal of Catalysis, 1977. 47(2): p. 249-259.
    26. Dejaifve, P., et al., Reaction pathways for the conversion of methanol and olefins on H-ZSM-5 zeolite. Journal of Catalysis, 1980. 63(2): p. 331-345.
    27. Inoue, Y., K. Nakashiro, and Y. Ono, Selective conversion of methanol into aromatic hydrocarbons over silver-exchanged ZSM-5 zeolites. Microporous Materials, 1995. 4(5): p. 379-383.
    28. Parker, L. and D. Bibby, Synthesis and some properties of two novel zeolites, KZ-1 and KZ-2. Zeolites, 1983. 3(1): p. 8-11.
    29. Chao, K.-j., et al., Temperature-programmed desorption studies on ZSM—5 zeolites. Zeolites, 1984. 4(1): p. 2-4.
    30. Cęckiewicz, S., Conversion of methanol into light hydrocarbons on erionite–offretite (T) zeolite. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984. 80(11): p. 2989-2998.
    31. Itoh, H., et al., Role of acid property of various zeolites in the methanol conversion to hydrocarbons. Journal of Catalysis.;(United States), 1984. 85(2).
    32. Xu, Y., et al., An investigation into the conversion of methanol to hydrocarbons over a SAPO-34 catalyst using magic-angle-spinning NMR and gas chromatography. Catalysis Letters, 1990. 4(3): p. 251-260.
    33. Ravishankar, R., et al., Characterization and catalytic properties of zeolite MCM-22. Microporous Materials, 1995. 4(1): p. 83-93.
    34. Mikkelsen, Ø. and S. Kolboe, The conversion of methanol to hydrocarbons over zeolite H-beta. Microporous and Mesoporous Materials, 1999. 29(1-2): p. 173-184.
    35. Dahl, I.M. and S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol. Journal of Catalysis, 1994. 149(2): p. 458-464.
    36. Dahl, I.M. and S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol. Journal of Catalysis, 1996. 161(1): p. 304-309.
    37. Olsbye, U., et al., Conversion of methanol to hydrocarbons: how zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 2012. 51(24): p. 5810-5831.
    38. Sun, X., et al., On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. Journal of Catalysis, 2014. 317: p. 185-197.
    39. Koohsaryan, E. and M. Anbia, Nanosized and hierarchical zeolites: A short review. Chinese Journal of Catalysis, 2016. 37(4): p. 447-467.
    40. Jacobsen, C.H., Nanosized zeolite crystals—convenient control of crystal size distribution by confined space synthesis. Chemical Communications, 1999(8): p. 673-674.
    41. Yang, Z., Y. Xia, and R. Mokaya, Zeolite ZSM‐5 with unique supermicropores synthesized using mesoporous carbon as a template. Advanced Materials, 2004. 16(8): p. 727-732.
    42. Schmidt, F., et al., Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous and Mesoporous Materials, 2012. 164: p. 214-221.
    43. Tang, K. and X. Hong. Carbon Nanotube Templated Growth of Nano-Crystallinity ZSM-5. in Advanced Materials Research. 2011. Trans Tech Publ.
    44. Matsukata, M., et al., Crystallization behavior of zeolite beta during steam-assisted crystallization of dry gel. Microporous and Mesoporous Materials, 2002. 56(1): p. 1-10.
    45. Mohammadparast, F., R. Halladj, and S. Askari, The synthesis of nano-sized ZSM-5 zeolite by dry gel conversion method and investigating the effects of experimental parameters by Taguchi experimental design. Journal of Experimental Nanoscience, 2018. 13(1): p. 160-173.
    46. Qiu, Y., et al., Different roles of CNTs in hierarchical HZSM-5 synthesis with hydrothermal and steam-assisted crystallization. RSC Advances, 2015. 5(95): p. 78238-78246.
    47. Viswanadham, N., G. Muralidhar, and T.P. Rao, Cracking and aromatization properties of some metal modified ZSM-5 catalysts for light alkane conversions. Journal of Molecular Catalysis A: Chemical, 2004. 223(1-2): p. 269-274.
    48. Conte, M., et al., Modified zeolite ZSM-5 for the methanol to aromatics reaction. Catalysis Science & Technology, 2012. 2(1): p. 105-112.
    49. Mowry, J., R. Anderson, and J. Johnson, Process makes aromatics from LPG. Oil & gas journal, 1985. 83(48): p. 128-131.
    50. Niu, X., et al., Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics. Microporous and Mesoporous Materials, 2014. 197: p. 252-261.
    51. Meriaudeau, P. and C. Naccache, Gallium based MFI zeolites for the aromatization of propane. Catalysis Today, 1996. 31(3-4): p. 265-273.
    52. Nowak, I., et al., Effect of H2–O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts. Applied Catalysis A: General, 2003. 251(1): p. 107-120.
    53. Ono, Y., H. Adachi, and Y. Senoda, Selective conversion of methanol into aromatic hydrocarbons over zinc-exchanged ZSM-5 zeolites. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1988. 84(4): p. 1091-1099.
    54. Wang, J.-y., et al., Conversion of lower alcohols into aromatics over cation-modified HZSM-5 zeolites. Chinese Journal of Catalysis, 1993. 3.
    55. Ono, Y., et al., Ag-ZSM-5 as a catalyst for aromatization of alkanes, alkenes, and methanol, in Studies in Surface Science and Catalysis. 1994, Elsevier. p. 1773-1780.
    56. Freeman, D., R.P. Wells, and G.J. Hutchings, Methanol to hydrocarbons: enhanced aromatic formation using a composite Ga2O3–H-ZSM-5 catalyst. Chemical Communications, 2001(18): p. 1754-1755.
    57. Freeman, D., R.P. Wells, and G.J. Hutchings, Conversion of methanol to hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 catalysts. Journal of Catalysis, 2002. 205(2): p. 358-365.
    58. Zaidi, H. and K. Pant, Catalytic conversion of methanol to gasoline range hydrocarbons. Catalysis Today, 2004. 96(3): p. 155-160.
    59. Barthos, R., et al., Aromatization of methanol and methylation of benzene over Mo2C/ZSM-5 catalysts. Journal of Catalysis, 2007. 247(2): p. 368-378.
    60. Lopez-Sanchez, J.A., et al., Reactivity of Ga2O3 clusters on zeolite ZSM-5 for the conversion of methanol to aromatics. Catalysis Letters, 2012. 142(9): p. 1049-1056.
    61. Zhang, G.Q., et al., Conversion of methanol to light aromatics on Zn-modified nano-HZSM-5 zeolite catalysts. Industrial & Engineering Chemistry Research, 2014. 53(39): p. 14932-14940.
    62. Lai, P.-C., et al., Methanol aromatization over Ga-doped desilicated HZSM-5. RSC advances, 2016. 6(71): p. 67361-67371.
    63. Kofke, T.J.G., et al., Stoichiometric adsorption complexes in H-ZSM-5, H-ZSM-12, and H-mordenite zeolites. Journal of Catalysis, 1989. 115(1): p. 265-272.
    64. Mosher, M., Organic Chemistry. (Morrison, Robert Thornton; Boyd, Robert Neilson). 1992, ACS Publications.
    65. Abdelrahman, O.A., et al., Simple quantification of zeolite acid site density by reactive gas chromatography. Catalysis Science & Technology, 2017. 7(17): p. 3831-3841.
    66. Deng, Z., et al., Carbon nanotubes as transient inhibitors in steam-assisted crystallization of hierarchical ZSM-5 zeolites. Materials Letters, 2015. 159: p. 466-469.
    67. Gao, Y., et al., Modified seeding method for preparing hierarchical nanocrystalline ZSM-5 catalysts for methanol aromatisation. Microporous and Mesoporous Materials, 2016. 226: p. 251-259.
    68. Serrano, D., et al., Molecular and meso-and macroscopic properties of hierarchical nanocrystalline ZSM-5 zeolite prepared by seed silanization. Chemistry of Materials, 2009. 21(4): p. 641-654.
    69. Xue, T., et al., Seed-induced synthesis of mesoporous ZSM-5 aggregates using tetrapropylammonium hydroxide as single template. Microporous and Mesoporous Materials, 2012. 156: p. 97-105.
    70. Flores, C., et al., Versatile Roles of Metal Species in Carbon Nanotube Templates for the Synthesis of Metal–Zeolite Nanocomposite Catalysts. ACS Applied Nano Materials, 2019. 2(7): p. 4507-4517.
    71. Fricke, R., et al., Incorporation of gallium into zeolites: syntheses, properties and catalytic application. Chemical reviews, 2000. 100(6): p. 2303-2406.
    72. Xin, M., et al., Ga substitution during modification of ZSM-5 and its influences on catalytic aromatization performance. Industrial & Engineering Chemistry Research, 2019. 58(17): p. 6970-6981.
    73. Gil, B., et al., Desilication of ZSM-5 and ZSM-12 zeolites: Impact on textural, acidic and catalytic properties. Catalysis Today, 2010. 152(1-4): p. 24-32.
    74. Chao, K.J., et al., Characterization of incorporated gallium in beta zeolite. Zeolites, 1997. 18(1): p. 18-24.
    75. Nishi, K., et al., Deconvolution analysis of Ga K-Edge XANES for quantification of gallium coordinations in oxide environments. The Journal of Physical Chemistry B, 1998. 102(50): p. 10190-10195.
    76. Prieto, C., et al., Characterization of Ga-substituted zeolite Beta by X-ray absorption spectroscopy. Journal of Materials Chemistry, 2000. 10(6): p. 1383-1387.
    77. Earl, W.L., et al., A solid-state NMR study of acid sites in zeolite Y using ammonia and trimethylamine as probe molecules. Journal of Physical Chemistry, 1987. 91(8): p. 2091-2095.
    78. Otero Areán, C., et al., Characterization of gallosilicate MFI-type zeolites by IR spectroscopy of adsorbed probe molecules. The Journal of Physical Chemistry, 1996. 100(16): p. 6678-6690.
    79. Miyamoto, T., et al., Acidic property of MFI-type gallosilicate determined by temperature-programmed desorption of ammonia. The Journal of Physical Chemistry B, 1998. 102(35): p. 6738-6745.
    80. Parry, E., An infrared study of pyridine adsorbed on acidic solids. Characterization of surface acidity. Journal of Catalysis, 1963. 2(5): p. 371-379.
    81. Kwak, B. and W. Sachtler, Effect of Ga/proton balance in Ga/HZSM-5 catalysts on C3 conversion to aromatics. Journal of Catalysis, 1994. 145(2): p. 456-463.
    82. Xiao, H., et al., A highly efficient Ga/ZSM-5 catalyst prepared by formic acid impregnation and in situ treatment for propane aromatization. Catalysis Science & Technology, 2015. 5(8): p. 4081-4090.
    83. Rane, N., et al., Characterization and reactivity of Ga+ and GaO+ cations in zeolite ZSM-5. Journal of Catalysis, 2006. 239(2): p. 478-485.
    84. LIU, R.-l., et al., Aromatization of propane over Ga-modified ZSM-5 catalysts. Journal of Fuel Chemistry and Technology, 2015. 43(8): p. 961-969.
    85. Ausavasukhi, A. and T. Sooknoi, Tunable activity of [Ga] HZSM-5 with H2 treatment: Ethane dehydrogenation. Catalysis Communications, 2014. 45: p. 63-68.
    86. Hamid, S.A., et al., Effect of reductive and oxidative atmospheres on the propane aromatisation activity and selectivity of Ga/H-ZSM-5 catalysts. Catalysis Today, 1996. 31(3-4): p. 327-334.
    87. Meriaudeau, P., C. Naccache, and S. Abdul Hamid, Propane conversion on Ga-HZSM-5: effect of aging on the dehydrogenating and acid functions using pyridine as an IR probe. Journal of Catalysis;(United States), 1993. 139(2).
    88. Schulz, H., “Coking” of zeolites during methanol conversion: Basic reactions of the MTO-, MTP-and MTG processes. Catalysis Today, 2010. 154(3-4): p. 183-194.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE