簡易檢索 / 詳目顯示

研究生: 吳貴越
Wu, Kuei-Yueh
論文名稱: 應用黏彈性支承於斜齒輪嚙合轉子軸承系統之動態分析
Dynamic Analysis of Helical Geared Rotor-Bearing System with Viscoelastic Supports
指導教授: 崔兆棠
Choi, Siu-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 56
中文關鍵詞: 轉子軸承系統斜齒輪有限元素法黏彈支承
外文關鍵詞: Rotor-Bearing System, Helical Gear, Finite Element Method, Viscoelastic Support
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以有限元素法分析含黏彈支承之斜齒輪轉子軸承系統之動態行為。系統轉軸模擬為Timoshenko樑,即考慮轉軸的旋轉慣性及剪應變效應;軸承以線性彈簧及阻尼器來模擬;支承以黏彈支承模擬;轉盤假設為剛體,考慮其陀螺效應;齒輪對視為沿著壓力線連接的兩個剛性轉盤來模擬。本文探討不同的斜齒輪角度、黏彈支承勁度係數與損耗因子,對系統動態特性的影響。分析結果顯示,隨著斜齒輪角度的增加,系統的側向響應會隨之降低,而軸向響應隨之提升。當黏彈支承的損耗因子增加,系統的穩態響應隨之降低,且系統的自然頻率些微上升;當黏彈支承的勁度系數增加,系統的自然頻率隨之上升。

    In this paper, the finite element method is used to analyze the dynamic behavior of the helical gear rotor bearing system with viscoelastic support. The system shaft is simulated as a Timoshenko beam, which considers the rotational inertia and shear strain effects of the shaft; the bearings are simulated by linear springs and dampers; the supports are simulated by viscoelastic supports; the turntable is assumed to be a rigid body and its gyroscopic effect is considered; Two rigid turntables connected by a pressure line are simulated.
    This paper discusses the influence of different helical gear angles, viscoelastic support stiffness coefficients and loss factors on the dynamic response of the system. The analysis results show that as the angle of the helical gear increases, the lateral response of the system will decrease, while the axial response will increase. When the loss factor of the viscoelastic support increases, the steady-state response of the system decreases, and the natural frequency of the system rises slightly; when the stiffness coefficient of the viscoelastic support increases, the natural frequency of the system rises accordingly.

    目錄 摘要 I 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 符號說明 XI 第一章 緒論 1 1-1前言 1 1-2研究動機與目的 2 1-3文獻回顧 2 1-4本文研究 6 第二章 系統運動方程式 7 2-1座標系統 7 2-2系統各單元之運動方程式 7 2-2-1轉盤 7 2-2-2轉軸 9 2-2-3軸承 11 2-2-4斜齒輪 12 2-2-5系統運動方程式 15 2-3動態特性分析 15 2-3-1旋振速率分析 15 2-3-2穩態響應分析 16 第三章 黏彈支承 17 3-1模型建立 17 3-1-1黏彈支承之方程式 20 3-1-2穩態響應分析 21 第四章 數值模擬結果討論 24 4-1程式收斂性分析與驗證 24 4-2黏彈支承對斜齒輪轉子軸承系統響應之影響 25 4-3黏彈支承損耗因子對系統響應的影響 25 4-4黏彈支承勁度係數對系統響應的影響 26 4-5不同斜齒輪角度對系統響應之影響 26 第五章 研究結果與結論 27 參考文獻 28 附錄一 32 附錄二 33 附錄三 40

    [1] Ruhl, R. L., and Booker, J. F., “A Finite Element Model for Distributed Parameter Turborotor System,” ASME, Journal of Engineering for Industry, Vol. 94, pp. 126-132, 1972.
    [2] Nelson, H. D., and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME, Journal of Engineering for Industry, Vol. 98, pp. 593-600, 1976.
    [3] Nelson, H. D., “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” ASME, Journal of Mechanical Design, Vol. 102, pp. 793-803, 1980.
    [4] Greenhill, L. M., Bickford, W. B., and Nelson, H. D., “A Conical Beam Finite Element for Rotor Dynamic Analysis,” ASME, Journal of Vibration Acoustics, Stress, Reliability in Design, Vol. 107, pp. 421-430, 1985.
    [5] Eshleman, R. L., and Eubanks, R. A., “On the Critical Speeds of a Continuous Rotor,” ASME, Journal of Engineering for Industry, Vol. 91, pp. 1180-1188, 1969.
    [6] 黃忠立,轉子-軸承系統在多臨界轉速限制下之輕量化設計, 國立成功大學航空太空工程研究所碩士論文,1987.
    [7] 阮競揚,含橫向裂縫的轉子軸承系統之動態特性分析, 國立成功大學航空太空工程研究所碩士論文,1997.
    [8] Shiau, T. N., Chen, E. C., Huang, K. H., and Hsu, W. C., “Dynamic Response of a Spinning Timoshenko Beam with General Boundary Conditions under a Moving Skew Force Using Global Assumed Model Method,” JSME, Vol. 49, pp. 401-410, 2006.
    [9] Mitchell, L. D., and Mellen, D. M., “Torsional-Lateral Coupling in a Geared High-Speed Rotor System,” ASME, Paper No.75-Det-75, 1975.
    [10] Lund, J., “Critical Speeds, Stability and Response of Geared Train of Rotors,” ASME, Journal of Mechanical Design, Vol. 100, pp. 535-539, 1978.
    [11] Kahraman, A., Ozguven, H. N., Houser, D. R., and Zakrajsek, J. J., “Dynamic Analysis of Geared Rotors by Finite Elements,” ASME, Journal of Mechanical Design, Vol. 114, pp. 507-514, 1992.
    [12] Rao, J. S., Shiau, T. N., and Chang, J. R., “Coupled Bending-Torsion Vibration of Geared Rotors,” ASME, Design Engineering Technical Conference, DE-Vol. 84-2, Vol. 3, Part B, pp. 977-989, 1995.
    [13] Choi, S. T., and Mau, S. Y., “Dynamic Analysis of Geared Rotor-Bearing System by the Transfer Matrix Method,” ASME, Journal of Mechanical Design, Vol. 123, pp. 562-568, 2001.
    [14] 陳膺中,齒輪轉子軸承系統之動態分析, 國立成功大學航空太空工程學系博士論文, 2014.
    [15] Kahraman, A., “Effect of Axial Vibration on the Dynamics of a Helical Gear Pair,” ASME, Journal of Vibration and Acoustics, Vol. 115, pp. 33-39, 1993.
    [16] Kahraman, A., “Dynamic Analysis of a Multi-Mesh Helical Gear Train,” ASME, Journal of Mechanical Design, Vol. 116, pp. 706-712, 1994.
    [17] Kubur, M., Kahraman, A., Zini, D. M., and Kienzle, K., “Dynamic Analysis of a Multi-Shaft Helical Gear Transmission by Finite Elements: Model and Experiments,” ASME, Journal of Mechanical Design, Vol. 126, pp. 398-406, 2004.
    [18] Draca, S., “Finite Element Model of a Double-Stage Helical Gear Reduction,” Doctoral Dissertation, University of Windsor, 2006.
    [19] Feng, K., Matsumura, S., and Houjoh, H., “Dynamic Behavior of Helical Gears with Effects of Shaft and Bearing Flexibilities,” Applied Mechanics and Materials, Vol. 86, pp. 26-29, 2011.
    [20] Yang, F., Huang, Q., Wang, Y., and Wang, J., “Research on Dynamics of Double-Mesh Helical Gear Set,” Applied Mechanics and Materials, Vol. 215, pp. 1021-1025, 2012.
    [21] Zhang, Y., Wang, Q., Ma, H., Huang, J., and Zhao, C., “Dynamic Analysis of Three-Dimensional Helical Geared Rotor System with Geometric Eccentricity,” KSME, Journal of Mechanical Science and Technology, Vol. 27, pp. 3231-3242, 2013.
    [22] Leaderman, H., and Marvin, R. S., “Dynamic Compliance, Dynamic Modulus, and Equivalent Voigt and Maxwell Models for Polyisobutylene,” Journal of Applied Physics, Vol. 24, pp. 812-813, 1953.
    [23] Bland, D. R., and Lee, E. H., “On the Determination of a Viscoelastic Model for Stress Analysis of Plastics,” ASME Journal of Applied Mechanics, Vol. 23, pp. 416-420, 1956.
    [24] Kapur, A. D., Nakra, B. C., and Chawla, D. R., “Shock Response of Viscoelastic Damped Beams,” Journal of Sound and Vibration, Vol. 55, pp. 351-362, 1977
    [25] Jones, D. I. G., Handbook of Viscoelastic Vibration Damping, John Wiley and Sons, New York, 1988.
    [26] Kulkarni, P., Pannu, S., and Nakra, B. C., “Unbalance Response and Stability of a Rotating System with Viscoelastically Supported Bearings,” Mechanism and Machine Theory, Vol. 28, pp. 427-436, 1993
    [27] 蘇友志,2012,含黏彈支承轉子軸承系統之動態分析,國立成功大學航空太空工程研究所碩士論文。

    無法下載圖示 校內:2026-09-24公開
    校外:2026-09-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE