| 研究生: |
林浩軒 Lin, Hao-Shuan |
|---|---|
| 論文名稱: |
利用全狀態回授線性化的球與輪系統之平衡控制 Balance Control of Ball and Wheel Systems via Full-State Feedback Linearization |
| 指導教授: |
何明字
Ho, Ming-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 球與輪系統 、欠致動性系統 、回授線性化 |
| 外文關鍵詞: | ball and wheel system, feedback linearization, underactuated system |
| 相關次數: | 點閱:104 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於架構簡單的原因,倒單擺、球與桿、倒三角等為控制實驗教育上或學術研究上常見之機電系統。前述的這些機電系統之共同特點為其皆具欠致動性,在過去幾年來欠致動性系統的穩定化及性能設計受到相當高的重視;又因前述之機電系統先天上為非線性且不穩定的系統,因此常被用來驗證先進的非線性控制理論的效能。回授線性化在非線性控制系統設計上不管於理論發展或實務應用方面,近幾年來皆受到相當高程度之重視。回授線性化的主要精神在於找到一個座標轉換及狀態回授,能將非線性系統轉換成線性非時變系統,然後就可以利用早已發展完善的線性系統控制理論,針對轉換過的線性系統設計控制器以達到穩定化及特定性能之控制目的。回授線性化的方法主要可分為兩種:全狀態回授線性化及輸入輸出回授線性化。令人遺憾的是上述的典型機電系統皆無法適用於全狀態回授線性化。從教育與學術的觀點而言,缺乏可全狀態回授線性化的機電實驗系統,使得控制實務與理論無法於課堂中相互驗證。基於上述之原因,本論文旨在提出一新的機電實驗系統架構,此簡單的機電系統稱為「球與輪系統」,此系統由直流馬達帶動輪盤使球能立在輪子上達到平衡。於論文中吾人將証實此系統可以利用全狀態回授線性化來設計穩定化之控制器,最後控制法則將利用數位訊號處理器來實現。
Due to structural simplicity, inverted pendulum, ball and beam, and seesaw, etc. are experimental benchmarks for control education and research. Moreover, most aforementioned mechatronic systems are underactuated. In the last few years, there has been major interest in designing controllers for underactuated systems for the closed-loop stability and performance. Due to inherent nonlinearity and instability of these experimental benchmarks, these systems provide platforms for verifying the effectiveness of the advanced methodologies in nonlinear control. Feedback linearization is an approach to nonlinear control design which has attracted a great research interest in recent years. The idea of this approach is to find a transformation that transforms the nonlinear system into a linear time-invariant system. Then, the design can be carried out on this new linear model using the well-established linear control design techniques. There are two feedback linearization approaches, namely, full-state feedback linearization and input-output feedback linearization. Unfortunately, full-state feedback linearization is not applicable to those aforementioned experimental benchmarks. Form educational and academic viewpoint, lack of such an experimental benchmark leaves a gap in the control practice and theory. Motivated by these facts, this thesis is going to introduce a novel mechatronic system, ball and wheel system. This system consists of a DC motor that drives a wheel to keep a ball staying on the wheel. It is show that the full-state feedback linearization is applicable to this system to design a stabilizing controller. Finally, the control law will be implemented through a digital signal processor.
參考文獻
[1] A. Isidori, Nonlinear Control Systems, Springer, London, 1995.
[2] H. Nijmeijer and A. V. Vander Schaft, Nonlinear Dynamical Control
Systems, Springer-Verlag, New York, 1990.
[3] R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptive
and Robust, Prentice Hall, London, 1995.
[4] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive
Control Design, John Wiley & Sons, New York, 1995.
[5] R. Marino and P. Tomei, Nonlinear Control Design:Geometric, Adaptive
and Robust, Prentice Hall, London, 1995.
[6] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control, Wiley, New
York, 1989.
[7] M. Zribi and J. Chiasson, “Position control of a PM stepper motor by
exact linearization,” IEEE Transactions on Automatic Control, Vol. 36,
No. 5, pp.620-625, 1991.
[8] P. O. Olivier, “Feedback linearization of DC motors,” IEEE
Transactions on Industrial Electronics, Vol. 38, No. 6, pp. 498-501,
1991.
[9] J. Chiasson, “Nonlinear differential-geometric techniques for control
of a series DC motor,” IEEE Transactions on Control System Technology,
Vol. 2, No. 1, pp. 35-42, 1994.
[10] S. N. Singh and T. C. Bossart, “Exact feedback linearization and
control of space station using CMG,” IEEE Transactions on Automatic
Control, Vol. 38, No. 1, pp. 184-187, 1993.
[11] J. Chiasson, “Dynamic feedback linearization of the induction motor,”
IEEE Transactions on Automatic Control, Vol. 38, No. 10, pp. 1588-1594,
1993.
[12] J. Chiasson, “A new approach to dynamic feedback linearization control
of an induction motor,” IEEE Transactions on Automatic Control, Vol.
43, No. 3, pp. 391-397, 1998.
[13] R. Marino, S. Peresada, and P. Valigi, “Adaptive input-output
linearizing control of induction motors,” IEEE Transactions on
Automatic Control, Vol. 38, No. 2, pp. 208-221, Feb. 1993.
[14] S. Jain, F. Khorrami, and B. Fardanesh, “Adaptive nonlinear excitation
control of power systems with unknown interconnections,” IEEE
Transactions on Control Systems Technology, Vol. 2, No. 4, pp. 436-446,
1994.
[15] L. Guzzella and A. M. Schmid, “Feedback linearization of spark-ignition
engines with continuously variable transmissions,” IEEE Transactions on
Control Systems Technology, Vol. 3, No. 1, pp. 54-60, 1995.
[16] S. N. Singh and W. Yin, “Feedback linearization and solar pressure
satellite attitude control,” IEEE Transactions on Aerospace and
Electronic Systems, Vol. 32, No. 2, pp. 732-741, 1996.
[17] D. L. Trumper, S. M. Olson, and P. K. Surbrahmanyan, “Linearizing
control of magnetic suspension systems,” IEEE Transactions on Control
Systems Technology, Vol. 5, No. 4, pp. 427-438, 1997.
[18] X. Shan, S. K. Kuo, J. Zhang, and C. H. Menq, “Ultra Precision motion
control of a multiple degrees of freedom magnetic suspension stage,”
IEEE/ASME Transactions on Mechatronics, Vol. 7, No. 1, pp. 67-78, 2002.
[19] M. Chen and C. R. Knospe, “Feedback linearization of active magnetic
bearings:Current-mode implementation,” IEEE/ASME Transactions on
Mechatronics, Vol. 10, No. 6, pp. 632-639, 2005.
[20] J. Jung, S. Lim, and K. Nam, “A feedback linearizing control scheme for
a PWM converter-inverter having a very small DC-link capacitor,” IEEE
Transactions on Industry Applications, Vol. 35, No. 5, pp. 1124-1131,
1999.
[21] D. C. Lee, G. M. Lee, and K. D. Lee, “DC-bus Voltage control of three-
phase AC/DC PWM converter using feedback linearization,” IEEE
Transactions on Industry Applications, Vol. 36, No. 3, pp. 826-833, 2000.
[22] J. F. Schaefer and R. H. Cannon, “On the control of unstable mechanical
systems,” In Automatic Remote Control Ⅲ, Proceedings of the 3rd
International Federation on Automatic Control (IFAC), Vol. 1 (6C. 1-6C.
13), 1967.
[23] K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-up control of inverted
pendulum using pseudo-state feedback,” Journal of Systems and Control
Engineering, Vol. 206, pp. 263-269, 1992.
[24] J. Hauser, S. Sastry, and P. Kokotovic, “Nonlinear control via
approximate input-output linearization: the ball and beam example,”
IEEE Transactions on Automatic Control, Vol. 37, No. 3, pp. 392-398,
1992.
[25] D. Cho, Y. Kato, and D. Spilman, “Sliding mode and classical
controllers in magnetic levitation systems,” IEEE Control Systems
Magazine, Vol. 13, No. 1, pp. 42-48, 1993.
[26] M. W. Spong, “The swing up control problem for the Acrobot, ” IEEE
Control Systems Magazine, Vol. 15, Issue 1, pp. 49-55, Feb. 1995.
[27] M. Spong and D. J. Block, “The pendubot: A mechatronic system for
control research and education,” Proceedings of the 34th IEEE
Conference on Decision and Control, 1995.
[28] L. E. Ramos, B. Castillo-Toledo, and S. Negretc, “Nonlinear regulation
of a seesaw inverted pendulum,” Proceedings of the 1998 IEEE
International Conference on Control Applications, Vol. 2, pp. 1399-1403,
1998.
[29] D. Hill and P. Moylan, “ The stability of nonlinear dissipative
systems,” IEEE Transactions on Automatic Control, Vol. 21, pp. 708-711,
1976.
[30] V. I. Utkin, Sliding Modes in Optimization and Control, Springer-Verlag,
New York, 1992.
[31] H. K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ,
2002.
[32] M. Spong, P. Corke, and R. Lozano, “Nonlinear control of the inertia
wheel pendulum,” Automatica, Vol. 37, pp. 1845-1851, 2001.
[33] I. Fantoni and R. Lozano, Nomlinear Control for Underactuated Mechanical
Systems, Springer, London, 2001.
[34] R. W. Brockett, “Feedback invariants for nonlinear systems,”
Proceedings of IFAC Congress, Helsinki, 1978.
[35] B. Jakubczyk and W. Respondek, “On linearization of control systems,”
Bull. Acad. Pol. Sci. ser. Sci. Math. Astr. Phys. Vol. 28, pp. 517-522,
1980.
[36] L. R. Hunt, R. Su, and G. Meyer, “Design for multi-input nonlinear
systems,” Differential Geometric Control Theory, Birkhauser, Boston,
1983.
[37] 呂俊明,「球與輪系統之平衡控制」,國立成功大學工程研究所碩士論文,
民國九十二年七月。
[38] M. T. Ho and J. M. Lu, “H∞ PID Controller Design for Lur’e Systems
and its Application to a Ball and Wheel Apparatus,” International
Journal of Control, Vol. 78, No. 1, 53-64, 2005.
[39] 黃聖財,「以數位信號處理器為基礎之球與桿系統平衡控制」,國立成功大學工程研
究所碩士論文,民國九十三年。
[40] B. C. Kuo, Automatic Control Systems, Prentice-Hall International
Editions, Upper Saddle River, NJ, 1997.
[41] SM320F2812 Digital Signal Processor (SGUS053), Texas Instruments,
2004.
[42] TMS320F2810 and TMS2812 32-Bit Fixed-Point Flash DSP (SPRT242A),
Texas Instruments, 2002.
[43] TMS320C2xx/C24x Code Composer User’s Guide (SPRU490), Texas
Instruments, 2000.
[44] TMS320C28x Assembly Language Tools User’s Guide (SPRU513), Texas
Instruments, 2001.