| 研究生: |
張仁豪 Chang, Jen-Hao |
|---|---|
| 論文名稱: |
高熵合金鍍層於不同氮通量之磨潤、機械、抗腐蝕性能及耐高溫性能及中介層變化之研究與銑削Inconel 718之應用 Tribological, mechanical, corrosion resistance, and high-temperature properties of high-entropy alloy coating under different nitrogen flux, interlayer modifications, and application in milling Inconel 718 |
| 指導教授: |
蘇演良
Su, Yen-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 磨潤 、鍍層 、多元素粉末燒結 、高熵合金 、切削 |
| 外文關鍵詞: | Tribology, Coating, Multi-Element Powder Sintering, High-Entropy Alloy, Machinability |
| 相關次數: | 點閱:3 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用多元素粉末熱壓燒結靶(單一粉末顆粒內含 Al、Cr、Nb、Si、Ti 五種元素)以及鉬與鉭純金屬電弧熔煉靶,成功製備七元高熵合金鍍層 (AlCrNbSiTiMoTa)。透過調整氮氣通量 (0 ~ 25 sccm),鍍層依序命名為 RN0、RN10、RN15、RN20 及 RN25,並研究不同氮通量對鍍層結構的影響,進一步分析其機械性質、磨潤特性及抗腐蝕性能。為模擬 Inconel 718 鎳基合金切削過程中的高溫環境,鍍層經 950°C、1 小時的真空退火處理,退火後分別命名為 HRN0、HRN10、HRN15、HRN20 及 HRN25,以探討鍍層的熱穩定性。研究結果顯示,RN10 鍍層呈現非晶結構,而其餘鍍層均為 FCC 結構。經退火後,所有鍍層皆維持 FCC 結構。其中,RN15 鍍層在退火前表現出最佳的硬度與磨潤性能,且退火後硬度、附著性與磨潤性能皆進一步提升,主要歸因於退火後鍍層結構的緻密化提升了其強度。此外,本研究進一步探討中介層對 RN15 鍍層的影響,發現改用 Cr 中介層的 RN15-Cr 鍍層在附著性(>100N)與磨潤性能(1.76μm, 9.12×10⁻⁶ mm³/Nm)方面有顯著突破。然而,退火後的 HRN15-Cr 鍍層在硬度、附著性及耐磨耗性能均大幅下降,顯示其熱穩定性較差。在 Inconel 718 鎳基合金的銑削實驗中,分別使用裸刀、RN15 及 RN15-Cr 鍍層刀具進行測試。結果顯示,RN15-Cr 鍍層刀具的表現明顯差於其他兩者,與其較差的熱穩定性結果一致。而 RN15 鍍層刀具在完成 18 m 銑削實驗後,刀腹磨耗相較於裸刀減少 31.4%,證實 RN15 鍍層具有一定的刀具保護作用,能有效延長刀具壽命。
A seven-element high-entropy alloy coating (AlCrNbSiTiMoTa) was deposited using a sintered multi-element powder target (Al, Cr, Nb, Si, Ti in one particle) and arc-melted Mo and Ta targets. By varying nitrogen flow (0–25 sccm), coatings RN0–RN25 were obtained. Their structure, mechanical properties, tribological behavior, and corrosion resistance were studied. To simulate high-temperature machining of Inconel 718, coatings were vacuum-annealed at 950 °C for 1 hour, renamed HRN0–HRN25. RN10 showed an amorphous structure, while others retained an FCC phase before and after annealing. RN15 showed the best pre-annealing hardness and tribological performance, which further improved post-annealing due to densification. Adding a Cr interlayer (RN15-Cr) enhanced adhesion and wear resistance, but post-annealing (HRN15-Cr) led to significant degradation, indicating poor thermal stability. Milling tests on Inconel 718 showed RN15-coated tools outperformed both uncoated and RN15-Cr-coated tools. RN15 reduced flank wear by 31.4%, confirming its durability and protective effectiveness.
[1] S. Pervaiz, A. Rashid, L. Deiab, M. Nicolescu, Influence of Tool Materials on Machinability of Titanium- and Nickel-Based Alloys: A Review, Mater. Manuf. Process. 29: p.219-252. 2014.
[2] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tasu, S. Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6: p.299-303. 2004.
[3] J. W. Yeh, Physical metallurgy of high-entropy alloys, JOM. 67: p.2254-2261. 2015.
[4] C. W. Tsai, K. C. Sung, K. Kasai, H. Murakami, Isothermal Oxidation of Aluminized Coatings on High-Entropy Alloys, Entropy 18: 376. 2016.
[5] P. J. Kelly, R. D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56: p.159-172. 2000.
[6] S. Arun, N. Radhika, B. Saleh, Advances in vacuum arc melting for high entropy alloys: A review, Vacuum 226: 113314. 2024.
[7] B. Kang, J. Lee, H. J. Ryu, S. H. Hong, Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process, Mater. Sci. Eng. A. 712: p.616-624. 2018.
[8] X. Zhang, X. Zeng, Y. Liu, J. Liu, A. Pogrebnjak, V. Pelenovich, Q. Wan, X. Liu, H. Wang, W. Lei, B. Yang, Effects of RF magnetron sputtering power on the structure and nanohardness of high-entropy alloys (TiVCrNbSiTaBY)N hard coatings, Ceram. Int. 49: p.33418-33424. 2023.
[9] Z. C. Chang, Structure and properties of duodenary (TiVCrZrNbMoHfTaWAlSi)N coatings by reactive magnetron sputtering, Mater. Chem. Phys. 220: p.98-110. 2018.
[10] Y. Dong, Y. Zhao, J. Li, J. Chen, J. Zheng, D. Sun, S. Wang, Super-hard and well-tough (TiZrVCrCoNi)Nx high entropy nitride coatings with biphasic nanocomposite structure, Vacuum. 224: 113110. 2024.
[11] X. Feng, Y. Zheng, K. Wang, H. Hu, K. Zhang, H. Zhou, High-temperature wear and oxidation behavior of (CrNbTaMoVW)N high entropy films deposited by reactive magnetron sputtering, Surf. Coat. Technol. 470: 129790. 2023.
[12] O. Odabas, A. C. Karaoglanli, Y. Ozgurluk, G. Binal, D. Ozkan, Evaluation of AlCoCrFeNiTi-high entropy alloy (HEA) as top coat material in thermal barrier coating (TBC) system and investigation of its high temperature oxidation behavior, Surf. Coat. Technol. 495: 131569. 2025.
[13] Z. P. Chen, X. N. Ren, P. Wang, W. C. Wang, Y. Wang, C. C. Ge, Microstructure, corrosion resistance and high temperature oxidation properties of AlCrFeNiCu high-entropy alloy coating by high-speed laser cladding, Surf. Coat. Technol. 491: 131159. 2024.
[14] Z. Liao, N. Li, W. Yang, S. Pang, N. Hua, Y. Meng, P. Liaw, T. Zhang, Effects of niobium on the microstructure, corrosion, and mechanical behavior of ultra-fine lamellar Al0.3CrFeCoNiNbx eutectic high-entropy alloys, J. Alloys Compd. 966: 171521. 2023.
[15] H. Zhang, Y. Liao, Y. Zhan, H. Chen, Q. Zhu, H. Chen, C. Zhao, L. Zheng, F. Wang, Function of Si on the microstructure, mechanical property and high temperature corrosion resistance of TiAlMoNbWSix HEA film, Mater. Chem. Phys. 319: 129336. 2024.
[16] Z. Li, K. Mei, J. Dong, Y. Yang, J. Sun, Z. Luo, An investigation on the wear and corrosion resistance of AlCoCrFeNi high-entropy alloy coatings enhanced by Ti and Si, Surf. Coat. Technol. 487: 130949. 2024.
[17] W. H. Kao, Y. L. Su, J. H. Horng, W. C. Wu, Mechanical, tribological and anti-corrosion properties of AlCrNbSiTi high entropy coatings with various nitrogen fluxes and application to nickel-based alloy milling, Mater. Chem. Phys. 282 125999. 2022.
[18] X. Zhang, Y. Liu, V. Pelenovich, B. Yang, Nanocomposite and Nanocrystalline Materials and Coatings, Springer, Singapore. p.37-90. 2024.
[19] V. Zin, F. Montagner, E. Miorin, C. Mortalò, R. Tinazzi, G. Bolelli, L. Lusvarghi, A. Togni, S. Frabboni, G. Gazzadi, A. Mescola, G. Paolicelli, L. Aremelao, S. M. Deambrosis, Effect of Mo content on the microstructure and mechanical properties of CoCrFeNiMox HEA coatings deposited by high power impulse magnetron sputtering, Surf. Coat. Technol. 476: 130244. 2024.
[20] Y. Li, Y. Shi, S. Wang, Q. Wang, K. Fan, Effect of Mo content on the microstructure and properties of Al0.5Fe2CrMnNiMox high entropy alloy, Mater. Today Commun. 39: 109281. 2024.
[21] Y. Zhao, K. Feng, C. Yao, Z. Li, Effect of MoO3 on the microstructure and tribological properties of laserclad Ni60/nanoCu/h-BN/MoO3 composite coatings over wide temperature range, Surf. Coat. Technol. 387: 125477. 2020.
[22] H. Tao, M. T. Tsai, H. W. Chen, J. C. Huang, J. G. Duh, Improving high-temperature tribological characteristics on nanocomposite CrAlSiN coating by Mo doping, Surf. Coat. Technol. 349: p.752-756. 2018.
[23] S. Chourasia, Y. Sharma, S. A. Nair, A. Tyagi, Evaluation of friction behaviour of composite coatings using Taguchi approach, Mater. Today Proc. 56: p.2129-2133. 2022.
[24] J. Zheng, Y. Zhao, J. Li, S. Zhang, J. Zhang, D. Sun, Study on Microstructure and Tribological Mechanism of Mo Incorporated (AlCrTiZr)N High-Entropy Ceramics Coatings Prepared by Magnetron Sputtering, Nanomaterials. 14: 814. 2024.
[25] H. Jiang, K. Han, D. Qiao, Y. Lu, Z. Cao, T. Li, Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy, Mater. Chem. Phys. 349: p.752-756. 2018.
[26] F. Ge, H. Yuan, Q. Gao, T. Peng, S. Guo, P. Lyu, Q. Guan, H. Liu, X. Liu, J. Guan, Microstructure, hardness and wear resistance of AlCoCrFeNiTax (x = 0, 0.1, 0.3) high-entropy alloys enhanced by laser remelting and Ta addition, J. Alloys Compd. 949: 169741. 2023.
[27] Y. Qi, Q. Ding, X. Cui, G. Jin, X. Zhang, Y. Liu, W. Zheng, X. Wen, Q. Zhang, Microstructure evolution and performance of TiMoCrWxTay refractory high-entropy alloy coatings prepared using laser cladding, Surf. Coat. Technol. 487: 130969. 2024.
[28] X. Zhang, X. Cui, G. Jin, Q. Ding, D. Zhang, X. Wen, L. Jiang, S. Wan, H. Tian, Microstructure evolution and properties of NiTiCrNbTax refractory high-entropy alloy coatings with variable Ta content, J. Alloys Compd. 891: 161756. 2021.
[29] S. Zhao, L. X. He, X. X. Fan, C. H. Liu, J. P. Long, L. Wang, H. Chang, J. Wang, W. Zhang, Microstructure and chloride corrosion property of nanocrystalline AlTiCrNiTa high entropy alloy coating on X80 pipeline steel, Surf. Coat. Technol. 375: p.215-220. 2019.
[30] T. I. El-Wardany, E. Mohammed, M. A. Elbestawi, Cutting temperature of ceramic tools in high speed machining of difficult-to-cut materials, Int. J. Mach. Tools Manuf. 36: p.611-634. 1996.
[31] https://www.iscar.com/Products.aspx/CountryId/39/ProductId/40.
[32] Y.C. Chim, X. Z. Ding, X. T. Zeng, S. Zhang, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin solid films. 517: p.4845-4849. 2009.
[33] D. C.Tsai, Z. C. Chang, B. H. Kuo, M. H. Shiao, S. Y. Chang, F. S. Shieu, Structural morphology and characterization of (AlCrMoTaTi)N coating deposited via magnetron sputtering, Appl. Surf. Sci. 282: p.789-797. 2013.
[34] S. Y. Chang, S. Y. Lin, Y. C. Huang, C. L. Wu, Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings, Surf. Coat. Technol. 204: p.3307-3314. 2010.
[35] X. Zhang, V. Pelenovich, X. Zeng, Q. Wang, J. Liu, A. Pogrebnjak, Y. Guo, Y. Liu, Y. Lei, B. Yang, Unravel hardening mechanism of AlCrNbSiTi high-entropy alloy coatings, J. Alloys Compd. 965: 171222. 2023.
[36] Y. Zhao, M. Jiang, J. Xu, Z. Xie, P. Munroe, Effects of nitrogen concentration on the microstructure and mechanical properties of nanocrystalline (TiZrNbTaMo)N high-entropy nitride coatings: Experimental investigations and first-principles calculations, Vacuum. 219: 112715. 2024
[37] P. Cui, W. Li, P. Liu, K. Zhang, F. Ma, X. Chen, R. Feng, P. Liaw, Effects of nitrogen content on microstructures and mechanical properties of (AlCrTiZrHf)N high-entropy alloy nitride films, J. Alloys Compd. 834: 155063. 2020.
[38] S. C. Liang, Z. C. Chang, D. C. Tsai, Y. C. Lin, H. S. Sung, M. J. Deng, F. S. Shieu, Effects of substrate temperature on the structure and mechanical properties of (TiVCrZrHf)N coatings, Appl. Surf. Sci. 257: p.7709-7713. 2011.
[39] J. Hu, J. Wang, Y. Wei, Q. Wu, F. Zhang, Q. Xu, Effect of film growth thickness on the refractive index and crystallization of HfO2 film, Ceram. Int. 47: p.33751-33757. 2021.
[40] J. F. Tang, J. E. Tsao, B. R. Lu, C. L. Chang, Microstructure and antibacterial properties of AlCrTiZrWN high-entropy alloy nitride synthesized using HiPIMS under various N2/Ar flow ratios, Surf. Coat. Technol. 481: 130693. 2024.
[41] F. Zhang, H. Ma, R. Zhao, G. Yu, J. Chen, F. Yin, Microstructure, mechanical and corrosion performance of magnetron sputtered (Al0.5CoCrFeNi)Nx high-entropy alloy nitride films, J. Alloys Compd. 968: 172158. 2023.
[42] B. Ren, Z. Shen, Z. Liu, Structure and mechanical properties of multi-element (AlCrMnMoNiZr)Nx coatings by reactive magnetron sputtering, J. Alloys Compd. 560: p.171-176. 2013.
[43] Y. C. Lin, S. Y. Hsu, R. W. Song, W. L. Lo, Y. T. Lai, S. Y. Tsai, J. G. Duh, Improving the hardness of high entropy nitride (Cr0.35Al0.25Nb0.12Si0.08V0.20)N coatings via tuning substrate temperature and bias for anti-wear applications, Surf. Coat. Technol. 403: 126417. 2020.
[44] M.F. Othman, A.R. Bushroa, W. N. R. Abdullah, Evaluation techniques and improvements of adhesion strength for TiN coating in tool applications: a review, J. Adhes. Sci. Technol. 29: p.569-591. 2015.
[45] S. Peng, J. Xu, D. Hu, Z. H. Xie, P. Munroe, The impact of surface scratches on the corrosion behavior of nanocrystalline high entropy alloy coatings: Electrochemical experiments and first-principles study, Appl. Mater. Today. 31: 101767. 2023.
[46] W. Z. Abuzaid, M. D. Sangid, J. D. Carrol, H. Sehitoglu, J. Lambros, Slip transfer and plastic strain accumulation across grain boundaries in HastelloyX, J. Mech. Phys. Solids. 60: p.1201-1220. 2012.
[47] W. Chen, A. Yan, X. Meng, D. Wu, D. Yao, D. Zhang, Microstructural change and phase transformation in each individual layer of a nano-multilayered AlCrTiSiN high-entropy alloy nitride coating upon annealing, Appl. Surf. Sci. 462: p.1017-1028. 2018.
[48] W. Chen, X. Meng, D. Wu, D. Yao, D. Zhang, The effect of vacuum annealing on microstructure, adhesion strength and electrochemical behaviors of multilayered AlCrTiSiN coatings, Appl. Surf. Sci. 467-468: p.391-401. 2019.
[49] X. Pang, H. Yang, X. Liu, K. Gao, Y. Wang, A. A. Volinsky, A. A. Levin, Annealing effects on microstructure and mechanical properties of sputtered multilayer Cr(1 − x)AlxN films, Thin solid films. 519: p.5831-5837. 2011.
[50] A. Farhadizadeh, J. Vlček, J. Houška, S. Haviar, R. Čerstvý, M. Červená, P. Zeman, M. Matas, Effect of nitrogen content on high-temperature stability of hard and optically transparent amorphous Hf-Y-Si-BCN coatings, Ceram. Int. 49: p.6086-6093. 2023.
[51] J. Li, Y. Chen, Y. Zhao, X. Shi, S. Wang, S. Zhang, Super-hard (MoSiTiVZr)Nx high-entropy nitride coatings, J. Alloys Compd. 926: 166807. 2022.
[52] C. Cheng, H. Li, C. Zhang, C. Guo, J. Lei, H. Zhang, S. Lin, Q. Wang, Effect of substrate bias on structure and properties of (AlTiCrZrNb)N high-entropy alloy nitride coatings through arc ion plating, Surf. Coat. Technol. 467: 129692. 2023.
[53] Y. Xin, J. Gao, K. Zheng, Y. Ma, X. Zheng, H. Hei, S. Yu, Magnetron sputtering TiZrNbTa HEA coating on CVD single crystal diamond for improving its solderability with Cu, Diam. Relat. Mater. 142: 110774. 2024.
[54] F. Zhang, L. Wang, H. Jin, S. He, Y. Luo, D. Zhang, F. Yin, Microstructure evolution and oxidation resistance of plasma sprayed AlSi-doped AlCoCrFeNi coatings with post-annealing, Surf. Coat. Technol. 494: 131439.
[55] C. Y. Cui, H. H. Xu, J. Yang, X. G. Cui, J. Z. Li, Effects of Al variations on the microstructure and mechanical properties of laser-cladding AlxNbMo0.5Ti1.5Ta0.5Cr0.5 refractory high-entropy alloy coatings, J. Alloys Compd. 1010: 177445. 2025.
[56] Y. Zhang, C. Chen, J. Xiong, Z. Guo, J. Liu, Q. You, L. Yang, D. Zhang, Y. Liu, Q. Liu, X. Jia, Effects of nano-Al2O3 addition on microstructure, mechanical properties, and wear resistance of Ti(C, N)-based cermets, IJRMHM. 115: 106290. 2023.
[57] M. Li, Y. Wang, P. Li, L. Song, L, Guo, B. Han, Investigation on Microstucutres and properties of ion nitriding layer of Al0.5CoCrFeNiTi0.25 HEAs cladding coating, Intermetallics. 175: 108508. 2024.
[58] H. T. Hsueh, W. J. Shen, M. H. Tsai, J. W. Yeh, Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr)100-xNx, Surf. Coat. Technol. 206: p. 4106-4112. 2012.
[59] G. Ghosh, A. Sidpara, and P.P. Bandyopadhyay, Understanding the role of surface roughness on the tribological performance and corrosion resistance of WC-Co coating, Surf. Coat. Technol. 378: 125080. 2019.
[60] S. Yi, W. Lu, C. Gao, Z. Zhang, J. Pan, D. Zhao, X. Du, L. Wang, D. Zuo, Composition, structure, and wear resistance of (TiZrNbMoTa)CxN1-x high entropy alloy carbonitride coatings prepared by reactive radio-frequency magnetron sputtering, Surf. Coat. Technol. 477: 130333. 2024.
[61] Z. Yang, Y. Jian, H. Qi, Z. Chen, D. Jing, Z. Huang, Microstructure evolution and high-temperature erosion behaviors of laser cladded AlxCoCrFeNi2.1 HEA coatings, J. Alloys Compd. 1008: 176761. 2024.
[62] F. Gyakwaa, T. Alatarvas, Q. Shu, M. Aula, T. Fabritius, Characterization of Synthetic Non-Metallic Inclusions Consisting of TiN, Ti2O3, and Oxides of Al2O3 and MgO·Al2O3 Spinel Using Raman Spectroscopy, Metals. 11: 1549. 2021.
[63] L. Fialho, C. F. A. Alves, S. Carvalho, A Decade of Progress on MAO-Treated Tantalum Surfaces: Advances and Contributions for Biomedical Applications, Nanomaterials. 12: 2319. 2022.
[64] J.H. Horng, W. H. Kao, W. C. Lin, R. H. Chang, Mechanical and Tribological Properties of (AlCrNbSiTiMo)N High-Entropy Alloy Films Prepared Using Single Multiple-Element Powder Hot-Pressed Sintered Target and Their Practical Application in Nickel-Based Alloy Milling, Lubricants. 12: 391. 2024.