簡易檢索 / 詳目顯示

研究生: 潘冠吾
Pan, Kuan-Wu
論文名稱: 大量表達六碳糖轉運蛋白質對於克魯維乳酸酵母菌生長之研究
A study on overexpression of hexose transporters to the growth of Kluyveromyces lactis
指導教授: 宋皇模
Sung, Huang-Mo
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 100
中文關鍵詞: Crabtree effectSaccharomyces cerevisiaeKluyveromyces lactis六碳糖轉運蛋白質
外文關鍵詞: Crabtree effect, Saccharomyces cerevisiae, Kluyveromyces lactis, Hexose transporters
相關次數: 點閱:153下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有部分的酵母菌在含有高濃度葡萄糖的環境中,即使氧氣充足,仍以發酵作用作為主要的代謝途徑,這些酵母菌被稱為Crabtree-positive酵母菌,例如:酵母菌 (Saccharomyces cerevisiae);克魯維乳酸酵母菌 (Kluyveromyces lactis) 則是Crabtree-negative酵母菌,以呼吸作用為主要的代謝途徑。研究指出,Crabtree-positive酵母菌的祖先可能是以呼吸作用為主,後來才演化成以發酵作用為主的代謝模式來適應環境。為了探討酵母菌的祖先轉換代謝模式的條件,本研究將S. cerevisiae的9種六碳糖轉運蛋白質基因 (hexose transporter gene, HXT) 分別大量表達 (overexpression) 於K. lactis中,藉此探討在增強攝取葡萄糖的能力下對於K. lactis以呼吸作用或發酵作用生長的影響。本次的研究顯示,大量表達HXT5或HXT6皆能顯著縮短K. lactis以呼吸作用生長的速率,大量表達HXT9能顯著加快K. lactis以呼吸作用生長時進入穩定期的時間,但是對於K. lactis以發酵作用生長的速率皆沒有顯著的影響;大量表達HXT1、HXT3、HXT8或HXT10對於K. lactis以呼吸作用或發酵作用生長皆沒有顯著的影響;另外,大量表達HXT2皆抑制了K. lactis以呼吸作用或發酵作用生長的速率。由上述結果得知,K. lactis以呼吸作用生長的效率大於以發酵作用生長的效率,而且我們認為只有部分的六碳糖轉運蛋白質能夠影響K. lactis生長的原因是,相較於其餘7種的六碳糖轉運蛋白質基因,大量表達HXT5或HXT6更能夠在細胞膜上組成具有運輸葡萄糖功能的構型,以提升運輸葡萄糖的速率,藉此轉換更多供給自身生長所需的能量。本次研究在探討酵母菌代謝途徑演化史的領域中提供了初步的方向與基礎。

    Saccharomyces cerevisiae performs fermentation in the present of even in the presence of oxygen, this phenomenon is known as the Crabtree effect. On the other hand, Kluyveromyces lactis is Crabtree-negative yeast that utilities glucose mainly by respiration pathway. Some studies have shown that the ancestral yeast depend on the respiration pathway, they switch metabolic pathway to adapt to the environment after evolution. We consider that per glucose metabolized by respiration to produce more ATP than by fermentation at the same time, the ancestral yeast probably adapted to the fermentation-based metabolic mode by increasing their glucose transport rate to convert more energy for their growth. In this study, to discuss the effects on growth in K. lactis by overexpression of hexose transporter genes (HXT) from S. cerevisiae. The growth curve showed that the overexpression of HXT5 or HXT6 could increase the growth rate significantly under respiration condition in K. lactis, but did not affect fermentative growth. This has led us to conclude that the energy conversion by respiratory growth is more efficient than fermentative growth in K. lactis. In my opinion, the reason why HXT5 or HXT6 can affect the growth in K. lactis is that only they can be folded into a functional construction for glucose transport, thereby converting more energy for its own growth. This study provides a new direction for this research field. This study provides a new direction for this research field.

    中文摘要 I 英文延伸摘要 II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 X 壹、緒論 1 一、前言 1 1.1 克魯維乳酸酵母菌 1 1.2 酵母菌的葡萄糖代謝途徑 3 1.3 酵母菌的Crabtree effect 5 1.4 酵母菌的六碳糖轉運蛋白質 9 二、研究動機與目的 11 貳、材料與方法 12 一、菌株與質體 12 1.1 菌株保存 12 1.2 菌株培養 13 二、同源重組技術與引子設計 14 2.1 URA3之同源重組 15 2.2 HXT大量表達系統之同源重組 16 三、酵母菌genomic DNA萃取 17 四、Plasmid DNA萃取 18 五、聚合酶連鎖反應 19 六、電穿孔轉型法 20 七、酵母菌RNA萃取 21 八、反轉錄聚合酶連鎖反應 22 九、凝膠電泳技術 22 十、生長曲線測定 23 參、結果與討論 24 一、大量表達高親和力的HXT基因對於K. lactis生長之影響 24 1.1 大量表達HXT6對於K. lactis生長之影響 24 二、大量表達中親和力的HXT基因對於K. lactis生長之影響 28 2.1 大量表達HXT2對於K. lactis生長之影響 28 2.2 大量表達HXT4對於K. lactis生長之影響 31 2.3 大量表達HXT5對於K. lactis生長之影響 33 三、大量表達低親和力的HXT基因對於K. lactis生長之影響 37 3.1 大量表達HXT1對於K. lactis生長之影響 37 3.2 大量表達HXT3對於K. lactis生長之影響 39 四、大量表達其他種類的HXT基因對於K. lactis生長之影響 43 4.1 大量表達HXT8對於K. lactis生長之影響 43 4.2 大量表達HXT9對於K. lactis生長之影響 45 4.3 大量表達HXT10對於K. lactis生長之影響 47 肆、結論 51 參考文獻 52 結果圖表 72 附錄 98 附錄圖1、酵母菌的演化史與Crabtree effect起源之假設 98 附錄圖2、S. cerevisiae的六碳糖轉運蛋白質基因 99 附錄圖3、篩選能以發酵作用生長的K. lactis品系 100

    林東潔,(2021)。酵母菌 (Saccharomyces cerevisiae) 六碳糖轉運蛋白質基因Hxt2、Hxt5、Hxt6及Hxt10對於克魯維乳酸酵母菌 (Kluyveromyces lactis) 生長之影響。國立成功大學生命科學研究所碩士學位論文。取自https://hdl.handle.net/11296/u4n89a
    賴姿雅,(2021)。糖運輸蛋白質基因對克魯維乳酸酵母菌中糖解作用的影響。國立成功大學生命科學研究所碩士學位論文。取自https://hdl.handle.net/11296/7q4xwg
    Aguirre-Lopez, B., Escalera-Fanjul, X., Hersch-Gonzalez, J. et al. (2020). In Kluyveromyces lactis a pair of paralogous isozymes catalyze the first committed step of leucine biosynthesis in either the mitochondria or the cytosol. Frontiers in Microbiology, 11, 1843. doi:10.3389/fmicb.2020.01843
    Andrell, J., & Tate, C. G. (2013). Overexpression of membrane proteins in mammalian cells for structural studies. Molecular Membrane Biology, 30(1), 52-63. doi:10.3109/09687688.2012.703703
    Ata, O., Rebnegger, C., Tatto, N. E. et al. (2018). A single Gal4-like transcription factor activates the Crabtree effect in Komagataella phaffii. Nature Communications, 9(1), 4911. doi:10.1038/s41467-018-07430-4
    Batt, C. A., Tortorello, M. L., ScienceDirect, & Elsevier. (2014). Encyclopedia of food microbiology (second edition). Academic Press, an imprint of Elsevier Ltd, London, UK.
    Benatuil, L., Perez, J. M., Belk, J. et al. (2010). An improved yeast transformation method for the generation of very large human antibody libraries. Protein Engineering, Design and Selection, 23(4), 155-159. doi:10.1093/protein/gzq002
    Bergkamp, R. J., Geerse, R. H., Verbakel, J. M. et al. (1993). Cloning and sequencing of the URA3 gene of Kluyveromyces marxianus CBS 6556. Yeast, 9(6), 677-681. doi:10.1002/yea.320090614
    Bernal, V., Gonzalez-Veracruz, M., Canovas, M. et al. (2007). Plasmid maintenance and physiology of a genetically engineered Escherichia coli strain during continuous L-carnitine production. Biotechnology Letters, 29(10), 1549-1556. doi:10.1007/s10529-007-9432-4
    Bertels, L. K., Fernandez Murillo, L., & Heinisch, J. J. (2021). The pentose phosphate pathway in yeasts-more than a poor cousin of glycolysis. Biomolecules, 11(5). doi:10.3390/biom11050725
    Billard, P., Menart, S., Blaisonneau, J. et al. (1996). Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport. Journal of Bacteriology, 178(20), 5860-5866. doi:10.1128/jb.178.20.5860-5866.1996
    Birchler, J. A., & Veitia, R. A. (2012). Gene balance hypothesis: connecting issues of dosage sensitivity across biological disciplines. Proceedings of the National Academy of Sciences of the United States of America, 109(37), 14746-14753. doi:10.1073/pnas.1207726109
    Birnboim, H. C., & Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Researchearch, 7(6), 1513-1523. doi:10.1093/nar/7.6.1513
    Boeke, J. D., Trueheart, J., Natsoulis, G. et al. (1987). 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods in Enzymology, 154, 164-175. doi:10.1016/0076-6879(87)54076-9
    Boles, E., & Hollenberg, C. P. (1997). The molecular genetics of hexose transport in yeasts. Federation of European Microbiological Societies Microbiology Reviews, 21(1), 85-111. doi:10.1111/j.1574-6976.1997.tb00346.x
    Bolognesi, B., & Lehner, B. (2018). Reaching the limit. Elife, 7. doi:10.7554/eLife.39804
    Bonekamp, F. J., & Oosterom, J. (1994). On the safety of Kluyveromyces lactis — a review. Applied Microbiology and Biotechnology, 41(1), 1-3. doi:10.1007/BF00166072
    Brown, C. J., Todd, K. M., & Rosenzweig, R. F. (1998). Multiple duplications of yeast hexose transport genes in response to selection in a glucose-limited environment. Molecular Biology and Evolution, 15(8), 931-942. doi:10.1093/oxfordjournals.molbev.a026009
    Chen, X., Gao, B., Shi, W. et al. (1992). Expression and secretion of human interferon alpha A in yeast Kluyveromyces lactis. Journal of genetics and genomics, 19(3), 284-288. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/1524854
    Chen, X. J., Wesolowski-Louvel, M., & Fukuhara, H. (1992). Glucose transport in the yeast Kluyveromyces lactis. II. Transcriptional regulation of the glucose transporter gene RAG1. Molecular Genetics and Genomics, 233(1-2), 97-105. doi:10.1007/BF00587566
    Chuzel, L., Ganatra, M. B., Schermerhorn, K. M. et al. (2017). Complete genome sequence of Kluyveromyces lactis strain GG799, a common yeast host for heterologous protein expression. Genome Announcements, 5(30). doi:10.1128/genomeA.00623-17
    Conant, G. C., & Wolfe, K. H. (2007). Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Molecular Systems Biology, 3, 129. doi:10.1038/msb4100170
    Crabtree, H. G. (1929). Observations on the carbohydrate metabolism of tumours. Biochemical Journal, 23(3), 536-545. doi:10.1042/bj0230536
    Dashko, S., Zhou, N., Compagno, C. et al. (2014). Why, when, and how did yeast evolve alcoholic fermentation? Federation of European Microbiological Societies Yeast Research, 14(6), 826-832. doi:10.1111/1567-1364.12161
    De Deken, R. H. (1966). The Crabtree effects and its relation to the petite mutation. Journal of General Microbiology, 44(2), 157-165. doi:10.1099/00221287-44-2-157
    de Kok, S., Kozak, B. U., Pronk, J. T. et al. (2012). Energy coupling in Saccharomyces cerevisiae: selected opportunities for metabolic engineering. Federation of European Microbiological Societies Yeast Research, 12(4), 387-397. doi:10.1111/j.1567-1364.2012.00799.x
    Divate, N. R., Chen, G. H., Wang, P. M. et al. (2016). Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose. Bioengineered, 7(6), 445-458. doi:10.1080/21655979.2016.1207019
    Dujon, B., Sherman, D., Fischer, G. et al. (2004). Genome evolution in yeasts. Nature, 430(6995), 35-44. doi:10.1038/nature02579
    Dymond, J. S. (2013). Saccharomyces cerevisiae growth media. Methods in Enzymology, 533, 191-204. doi:10.1016/B978-0-12-420067-8.00012-X
    Eknikom, S., Nasuno, R., & Takagi, H. (2022). Molecular mechanism of ethanol fermentation inhibition via protein tyrosine nitration of pyruvate decarboxylase by reactive nitrogen species in yeast. Scientific Reports, 12(1), 4664. doi:10.1038/s41598-022-08568-4
    Elbing, K., Larsson, C., Bill, R. M. et al. (2004). Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 70(9), 5323-5330. doi:10.1128/AEM.70.9.5323-5330.2004
    Elbing, K. L., & Brent, R. (2019). Recipes and tools for culture of Escherichia coli. Current Protocols in Molecular Biology, 125(1), e83. doi:10.1002/cpmb.83
    Eyler, E. (2013). Pouring agar plates and streaking or spreading to isolate individual colonies. Methods in Enzymology, 533, 3-14. doi:10.1016/B978-0-12-420067-8.00001-5
    Field, Y., Fondufe-Mittendorf, Y., Moore, I. K. et al. (2009). Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nature Genetics, 41(4), 438-445. doi:10.1038/ng.324
    Fleer, R., Chen, X. J., Amellal, N. et al. (1991). High-level secretion of correctly processed recombinant human interleukin-1 beta in Kluyveromyces lactis. Gene, 107(2), 285-295. doi:10.1016/0378-1119(91)90329-a
    Fowell, R. R. (1952). Sodium acetate agar as a sporulation medium for yeast. Nature, 170(4327), 578. doi:10.1038/170578a0
    Fredlund, E., Blank, L. M., Schnurer, J. et al. (2004). Oxygen- and glucose-dependent regulation of central carbon metabolism in Pichia anomala. Applied and Environmental Microbiology, 70(10), 5905-5911. doi:10.1128/AEM.70.10.5905-5911.2004
    Fuxman Bass, J. I., Reece-Hoyes, J. S., & Walhout, A. J. (2016). Zymolyase-treatment and polymerase chain reaction amplification from genomic and plasmid templates from yeast. Cold Spring Harbor Protocols, 2016(12). doi:10.1101/pdb.prot088971
    Geertsma, E. R., Groeneveld, M., Slotboom, D. J. et al. (2008). Quality control of overexpressed membrane proteins. Proceedings of the National Academy of Sciences of the United States of America, 105(15), 5722-5727. doi:10.1073/pnas.0802190105
    Glover, D. M. (1985). DNA Cloning: A Practical Approach. Volume 1. Information Retrieval Limited Press, Oxford, UK.
    Goffrini, P., Wesolowski-Louvel, M., Ferrero, I. et al. (1990). RAG1 gene of the yeast Kluyveromyces lactis codes for a sugar transporter. Nucleic Acids Researchearch, 18(17), 5294. doi:10.1093/nar/18.17.5294
    Greco, M., Saez, C. A., Brown, M. T. et al. (2014). A simple and effective method for high quality co-extraction of genomic DNA and total RNA from low biomass Ectocarpus siliculosus, the model brown alga. Public Library of Science ONE, 9(5), e96470. doi:10.1371/journal.pone.0096470
    Hagman, A., & Piskur, J. (2015). A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast. Public Library of Science ONE, 10(1), e0116942. doi:10.1371/journal.pone.0116942
    Hagman, A., Sall, T., Compagno, C., & Piskur, J. (2013). Yeast "make-accumulate-consume" life strategy evolved as a multi-step process that predates the whole genome duplication. Public Library of Science ONE, 8(7), e68734. doi:10.1371/journal.pone.0068734
    Hagman, A., Sall, T., & Piskur, J. (2014). Analysis of the yeast short-term Crabtree effect and its origin. The Federation of European Biochemical Societies Journal, 281(21), 4805-4814. doi:10.1111/febs.13019
    Harris, D. C. (2007). Quantitative Chemical Analysis (seventh edition). William Hazen Freeman and Company, New York, USA
    Heinrich, R., & Schuster, S. (1996). The Regulation of Cellular Systems. Chapman & Hall, New York, USA.
    Hinkle, P. C. (2005). P/O ratios of mitochondrial oxidative phosphorylation. Biochimica et Biophysica Acta, 1706(1-2), 1-11. doi:10.1016/j.bbabio.2004.09.004
    Hua, S. B., Qiu, M., Chan, E. et al. (1997). Minimum length of sequence homology required for in vivo cloning by homologous recombination in yeast. Plasmid, 38(2), 91-96. doi:10.1006/plas.1997.1305
    Hui, Y. H. (2006). Food Biochemistry and Food Processing (first edition). Blackwell Pub Professional, Ames, Iowa, USA.
    Jang, T. H., Park, S. C., Yang, J. H. et al. (2017). Cryopreservation and its clinical applications. Integrative Medicine Research, 6(1), 12-18. doi:10.1016/j.imr.2016.12.001
    Johnston, G. C., Pringle, J. R., & Hartwell, L. H. (1977). Coordination of growth with cell division in the yeast Saccharomyces cerevisiae. Experimental Cell Research, 105(1), 79-98. doi:10.1016/0014-4827(77)90154-9
    Jones, K. D., & Kompala, D. S. (1999). Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. Journal of Biotechnology, 71(1-3), 105-131. doi:10.1016/s0168-1656(99)00017-6
    Kawai, S., Hashimoto, W., & Murata, K. (2010). Transformation of Saccharomyces cerevisiae and other fungi: methods and possible underlying mechanism. Bioengineering the bugs, 1(6), 395-403. doi:10.4161/bbug.1.6.13257
    Kellis, M., Birren, B. W., & Lander, E. S. (2004). Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature, 428(6983), 617-624. doi:10.1038/nature02424
    Kilonzo, P. M., Margaritis, A., & Bergougnou, M. A. (2009). Plasmid stability and kinetics of continuous production of glucoamylase by recombinant Saccharomyces cerevisiae in an airlift bioreactor. The Journal of Industrial Microbiology and Biotechnology, 36(9), 1157-1169. doi:10.1007/s10295-009-0597-9
    Kim, J. H., Roy, A., Jouandot, D. et al. (2013). The glucose signaling network in yeast. Biochimica et Biophysica Acta, 1830(11), 5204-5210. doi:10.1016/j.bbagen.2013.07.025
    Kostylev, M., Otwell, A. E., Richardson, R. E. et al. (2015). Cloning should be simple: Escherichia coli DH5alpha-mediated assembly of multiple DNA fragments with short end homologies. Public Library of Science ONE, 10(9), e0137466. doi:10.1371/journal.pone.0137466
    Kreger-Van Rij, N. J. W. (1984). The Yeasts: a taxonomic study (third edition). Elsevier Science Publishers B.V., Amsterdam, Netherlands.
    Kruckeberg, A. L. (1996). The hexose transporter family of Saccharomyces cerevisiae. Archives of Microbiology, 166(5), 283-292. doi:10.1007/s002030050385
    Kurtzman, C. P. (2003). Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. Federation of European Microbiological Societies Yeast Reviews, 4(3), 233-245. doi:10.1016/S1567-1356(03)00175-2
    Kurtzman, C. P., & Robnett, C. J. (2003). Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses. Federation of European Microbiological Societies Yeast Reviews, 3(4), 417-432. doi:10.1016/s1567-1356(03)00012-6
    Lachance, M. A. (2007). Current status of Kluyveromyces systematics. Federation of European Microbiological Societies Yeast Reviews, 7(5), 642-645. doi:10.1111/j.1567-1364.2006.00197.x
    Lautenberger, J. A., & Chen, Z. Q. (1987). A method for the preparation of high molecular weight yeast DNA. Gene Analysis Techniques, 4(5), 87-88. doi:10.1016/0735-0651(87)90001-x
    Lee, P. Y., Costumbrado, J., Hsu, C. Y. et al. (2012). Agarose gel electrophoresis for the separation of DNA fragments. Journal of Visualized Experiments, 20(62). doi:10.3791/3923
    Lever, M. A., Torti, A., Eickenbusch, P. et al. (2015). A modular method for the extraction of DNA and RNA, and the separation of DNA pools from diverse environmental sample types. Frontiers in Microbiology, 6, 476. doi:10.3389/fmicb.2015.00476
    Levesque-Sergerie, J. P., Duquette, M., Thibault, C. et al. (2007). Detection limits of several commercial reverse transcriptase enzymes: impact on the low- and high-abundance transcript levels assessed by quantitative RT-PCR. Biochemistry and Molecular Biology, 8, 93. doi:10.1186/1471-2199-8-93
    Liang, H., & Gaber, R. F. (1996). A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. Molecular Biology of the Cell, 7(12), 1953-1966. doi:10.1091/mbc.7.12.1953
    Lin-Cereghino, J., Wong, W. W., Xiong, S. et al. (2005). Condensed protocol for competent cell preparation and transformation of the methylotrophic yeast Pichia pastoris. Biotechniques, 38(1), 44, 46, 48. doi:10.2144/05381BM04
    Lin, Z., & Li, W. H. (2011). Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts. Molecular Biology and Evolution, 28(1), 131-142. doi:10.1093/molbev/msq184
    Lomer, M. C., Parkes, G. C., & Sanderson, J. D. (2008). Review article: lactose intolerance in clinical practice--myths and realities. Alimentary Pharmacology & Therapeutics, 27(2), 93-103. doi:10.1111/j.1365-2036.2007.03557.x
    Looke, M., Kristjuhan, K., & Kristjuhan, A. (2011). Extraction of genomic DNA from yeasts for PCR-based applications. Biotechniques, 50(5), 325-328. doi:10.2144/000113672
    Luyten, K., Riou, C., & Blondin, B. (2002). The hexose transporters of Saccharomyces cerevisiae play different roles during enological fermentation. Yeast, 19(8), 713-726. doi:10.1002/yea.869
    Malina, C., Yu, R., Bjorkeroth, J. et al. (2021). Adaptations in metabolism and protein translation give rise to the Crabtree effect in yeast. Proceedings of the National Academy of Sciences of the United States of America, 118(51). doi:10.1073/pnas.2112836118
    Maslanka, R., & Zadrag-Tecza, R. (2020). Reproductive potential of yeast cells depends on overall action of interconnected changes in central carbon metabolism, cellular biosynthetic capacity, and proteostasis. International Journal of Molecular Sciences, 21(19). doi:10.3390/ijms21197313
    Mathieu, K., Javed, W., Vallet, S. et al. (2019). Functionality of membrane proteins overexpressed and purified from E. coli is highly dependent upon the strain. Scientific Reports, 9(1), 2654. doi:10.1038/s41598-019-39382-0
    McEntee, C. M., & Hudson, A. P. (1989). Preparation of RNA from unspheroplasted yeast cells (Saccharomyces cerevisiae). Analytical Biochemistry, 176(2), 303-306. doi:10.1016/0003-2697(89)90313-8
    Meadows, A. L., Hawkins, K. M., Tsegaye, Y. et al. (2016). Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature, 537(7622), 694-697. doi:10.1038/nature19769
    Merico, A., Sulo, P., Piskur, J. et al. (2007). Fermentative lifestyle in yeasts belonging to the Saccharomyces complex. Federation of European Biochemical Societies Journal, 274(4), 976-989. doi:10.1111/j.1742-4658.2007.05645.x
    Micard, D., Sobrier, M. L., Couderc, J. L. et al. (1985). Purification of RNA-free plasmid DNA using alkaline extraction followed by Ultrogel A2 column chromatography. Analytical Biochemistry, 148(1), 121-126. doi:10.1016/0003-2697(85)90636-0
    Milkowski, C., Krampe, S., Weirich, J. et al. (2001). Feedback regulation of glucose transporter gene transcription in Kluyveromyces lactis by glucose uptake. Journal of Bacteriology, 183(18), 5223-5229. doi:10.1128/JB.183.18.5223-5229.2001
    Moore, D., & Dowhan, D. (2002). Purification and concentration of DNA from aqueous solutions. Current Protocols in Molecular Biology, Chapter 2, Unit 2 1A. doi:10.1002/0471142727.mb0201as59
    Muller, H., Annaluru, N., Schwerzmann, J. W. et al. (2012). Assembling large DNA segments in yeast. Methods in Molecular Biology, 852, 133-150. doi:10.1007/978-1-61779-564-0_11
    Mullis, K. B., & Faloona, F. A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol, 155, 335-350. doi:10.1016/0076-6879(87)55023-6
    Naumova, E. S., Sukhotina, N. N., & Naumov, G. I. (2004). Molecular-genetic differentiation of the dairy yeast Kluyveromyces lactis and its closest wild relatives. Federation of European Microbiological Societies Yeast Reviews, 5(3), 263-269. doi:10.1016/j.femsyr.2004.08.006
    Nonklang, S., Abdel-Banat, B. M., Cha-aim, K. et al. (2008). High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Applied and Environmental Microbiology, 74(24), 7514-7521. doi:10.1128/AEM.01854-08
    Noor, E., Eden, E., Milo, R. et al. (2010). Central carbon metabolism as a minimal biochemical walk between precursors for biomass and energy. Molecular Cell, 39(5), 809-820. doi:10.1016/j.molcel.2010.08.031
    Nwokeoji, A. O., Kilby, P. M., Portwood, D. E. et al. (2016). RNASwift: A rapid, versatile RNA extraction method free from phenol and chloroform. Analytical Biochemistry, 512, 36-46. doi:10.1016/j.ab.2016.08.001
    Olivares-Marin, I. K., Gonzalez-Hernandez, J. C., Regalado-Gonzalez, C. et al. (2018). Saccharomyces cerevisiae exponential growth kinetics in batch culture to analyze respiratory and fermentative metabolism. Journal of Visualized Experiments (139). doi:10.3791/58192
    Ozcan, S., & Johnston, M. (1999). Function and regulation of yeast hexose transporters. Microbiology and Molecular Biology Reviews, 63(3), 554-569. doi:10.1128/MMBR.63.3.554-569.1999
    Ozturk, S., Demir, I., & Calik, P. (2019). Isolation of high-quality RNA from Pichia pastoris. Current Protocols in Protein Science, 98(1), e101. doi:10.1002/cpps.101
    Pao, S. S., Paulsen, I. T., & Saier, M. H., Jr. (1998). Major facilitator superfamily. Microbiology and Molecular Biology Reviews, 62(1), 1-34. doi:10.1128/MMBR.62.1.1-34.1998
    Park, E. H., Seo, J. H., & Kim, M. D. (2012). Cloning and characterization of the orotidine-5'-phosphate decarboxylase gene (URA3) from the osmotolerant yeast Candida magnoliae. J Microbiol Biotechnol, 22(5), 642-648. doi:10.4014/jmb.1111.11071
    Pegg, D. E. (2007). Principles of cryopreservation. Methods in Molecular Biology, 368, 39-57. doi:10.1007/978-1-59745-362-2_3
    Perez, M., Luyten, K., Michel, R. et al. (2005). Analysis of Saccharomyces cerevisiae hexose carrier expression during wine fermentation: both low- and high-affinity Hxt transporters are expressed. Federation of European Microbiological Societies Yeast Reviews, 5(4-5), 351-361. doi:10.1016/j.femsyr.2004.09.005
    Pfeiffer, T., & Bonhoeffer, S. (2004). Evolution of cross-feeding in microbial populations. The American Naturalist, 163(6), E126-135. doi:10.1086/383593
    Pfeiffer, T., & Morley, A. (2014). An evolutionary perspective on the Crabtree effect. Frontiers in Molecular Biosciences, 1, 17. doi:10.3389/fmolb.2014.00017
    Pfeiffer, T., & Schuster, S. (2005). Game-theoretical approaches to studying the evolution of biochemical systems. Trends in Biochemical Sciences, 30(1), 20-25. doi:10.1016/j.tibs.2004.11.006
    Pfeiffer, T., Schuster, S., & Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science, 292(5516), 504-507. doi:10.1126/science.1058079
    Picard-Meyer, E., Peytavin de Garam, C., Schereffer, J. L. et al. (2015). Cross-platform evaluation of commercial real-time SYBR green RT-PCR kits for sensitive and rapid detection of European bat Lyssavirus type 1. BioMed Research International, 839518. doi:10.1155/2015/839518
    Piskur, J., & Langkjaer, R. B. (2004). Yeast genome sequencing: the power of comparative genomics. Molecular Microbiology, 53(2), 381-389. doi:10.1111/j.1365-2958.2004.04182.x
    Piskur, J., Rozpedowska, E., Polakova, S. et al. (2006). How did Saccharomyces evolve to become a good brewer? Trend in Genetics, 22(4), 183-186. doi:10.1016/j.tig.2006.02.002
    Postma, E., Verduyn, C., Scheffers, W. A. et al. (1989). Enzymic analysis of the Crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 55(2), 468-477. doi:10.1128/aem.55.2.468-477.1989
    Powell, L. M., Wallis, S. C., Pease, R. J. et al. (1987). A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell, 50(6), 831-840. doi:10.1016/0092-8674(87)90510-1
    Pritchard, L., & Kell, D. B. (2002). Schemes of flux control in a model of Saccharomyces cerevisiae glycolysis. European Journal of Biochemistry, 269(16), 3894-3904. doi:10.1046/j.1432-1033.2002.03055.x
    Prochazka, E., Polakova, S., Piskur, J. et al. (2010). Mitochondrial genome from the facultative anaerobe and petite-positive yeast Dekkera bruxellensis contains the NADH dehydrogenase subunit genes. Federation of European Microbiological Societies Yeast Reviews, 10(5), 545-557. doi:10.1111/j.1567-1364.2010.00644.x
    Pronk, J. T., Yde Steensma, H., & Van Dijken, J. P. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast, 12(16), 1607-1633. doi:10.1002/(sici)1097-0061(199612)12:16<1607::aid-yea70>3.0.co;2-4
    Reifenberger, E., Boles, E., & Ciriacy, M. (1997). Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. European Journal of Biochemistry, 245(2), 324-333. doi:10.1111/j.1432-1033.1997.00324.x
    Reifenberger, E., Freidel, K., & Ciriacy, M. (1995). Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Molecular Microbiology, 16(1), 157-167. doi:10.1111/j.1365-2958.1995.tb02400.x
    Reijenga, K. A., Snoep, J. L., Diderich, J. A. et al. (2001). Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Biophysical Journal, 80(2), 626-634. doi:10.1016/S0006-3495(01)76043-2
    Ren, C., Yan, Q., & Zhang, Z. (2014). Minimum length of direct repeat sequences required for efficient homologous recombination induced by zinc finger nuclease in yeast. Molecular Biology Reports, 41(10), 6939-6948. doi:10.1007/s11033-014-3579-6
    Rodicio, R., & Heinisch, J. J. (2013). Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast, 30(5), 165-177. doi:10.1002/yea.2954
    Rose, M. D., Winston, F., Hieter, P., & Cold Spring Harbor, L. (1990). Methods in Yeast Genetics: A Laboratory Course Manual. Cold Spring Laboratory Press, New York, USA.
    Roth, R., Madhani, H. D., & Garcia, J. F. (2018). Total RNA isolation and quantification of specific RNAs in fission yeast. Methods in Molecular Biology, 1721, 63-72. doi:10.1007/978-1-4939-7546-4_6
    Rozpedowska, E., Hellborg, L., Ishchuk, O. P. et al. (2011). Parallel evolution of the make-accumulate-consume strategy in Saccharomyces and Dekkera yeasts. Nature Communications, 2, 302. doi:10.1038/ncomms1305
    Saiki, R. K., Scharf, S., Faloona, F. et al. (1985). Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 230(4732), 1350-1354. doi:10.1126/science.2999980
    Sakai, Y., Kazarimoto, T., & Tani, Y. (1991). Transformation system for an asporogenous methylotrophic yeast, Candida boidinii: cloning of the orotidine-5'-phosphate decarboxylase gene (URA3), isolation of uracil auxotrophic mutants, and use of the mutants for integrative transformation. Journal of Bacteriology, 173(23), 7458-7463. doi:10.1128/jb.173.23.7458-7463.1991
    Salari, R., & Salari, R. (2017). Investigation of the Best Saccharomyces cerevisiae growth condition. Electronic Physician, 9(1), 3592-3597. doi:10.19082/3592
    Sanchez, M., Iglesias, F. J., Santamaria, C. et al. (1993). Transformation of Kluyveromyces lactis by Electroporation. Applied and Environmental Microbiology, 59(7), 2087-2092. doi:10.1128/aem.59.7.2087-2092.1993
    Sarkar, G., Kapelner, S., & Sommer, S. S. (1990). Formamide can dramatically improve the specificity of PCR. Nucleic Acids Research, 18(24), 7465. doi:10.1093/nar/18.24.7465
    Scannell, D. R., Frank, A. C., Conant, G. C. et al. (2007). Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication. Proceedings of the National Academy of Sciences of the United States of America, 104(20), 8397-8402. doi:10.1073/pnas.0608218104
    Schikora-Tamarit, M. A., Marcet-Houben, M., Nosek, J. et al. (2021). Shared evolutionary footprints suggest mitochondrial oxidative damage underlies multiple complex I losses in fungi. Open Biology, 11(4), 200362. doi:10.1098/rsob.200362
    Schuster, S., Pfeiffer, T., & Fell, D. A. (2008). Is maximization of molar yield in metabolic networks favoured by evolution? Journal of Theoretical Biology, 252(3), 497-504. doi:10.1016/j.jtbi.2007.12.008
    Shuster, J. R., Moyer, D., & Irvine, B. (1987). Sequence of the Kluyveromyces lactis URA3 gene. Nucleic Acids Research, 15(20), 8573. doi:10.1093/nar/15.20.8573
    Sigmon, J., & Larcom, L. L. (1996). The effect of ethidium bromide on mobility of DNA fragments in agarose gel electrophoresis. Electrophoresis, 17(10), 1524-1527. doi:10.1002/elps.1150171003
    Simpson-Lavy, K., & Kupiec, M. (2019). Carbon catabolite repression in yeast is not limited to glucose. Scientific Reports, 9(1), 6491. doi:10.1038/s41598-019-43032-w
    Singleton, R., Jr., & Singleton, D. R. (2017). Remembering our forebears: Albert Jan Kluyver and the unity of life. Journal of the History of Biology, 50(1), 169-218. doi:10.1007/s10739-016-9438-7
    Skoog, D. A., Holler, F. J., & Crouch, S. R. (2007). Principles of Instrumental Analysis (sixth edition). Thomson Brooks/Cole, Belmont, California, USA.
    Spohner, S. C., Schaum, V., Quitmann, H. et al. (2016). Kluyveromyces lactis: an emerging tool in biotechnology. Journal of Biotechnology, 222, 104-116. doi:10.1016/j.jbiotec.2016.02.023
    Stadler, J., Lemmens, R., & Nyhammar, T. (2004). Plasmid DNA purification. The Journal of Gene Medicine, 6(1), 54-66. doi:10.1002/jgm.512
    Suga, M., & Hatakeyama, T. (2003). High-efficiency electroporation by freezing intact yeast cells with addition of calcium. Current Genetics, 43(3), 206-211. doi:10.1007/s00294-003-0385-4
    Sun, Y., Hegamyer, G., & Colburn, N. H. (1993). PCR-direct sequencing of a GC-rich region by inclusion of 10% DMSO: application to mouse c-jun. Biotechniques, 15(3), 372-374.
    Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8217142
    Thomson, J. M., Gaucher, E. A., Burgan, M. F. et al. (2005). Resurrecting ancestral alcohol dehydrogenases from yeast. Nature Genetics, 37(6), 630-635. doi:10.1038/ng1553
    Tittarelli, F., Varela, J. A., Gethins, L. et al. (2018). Development and implementation of multilocus sequence typing to study the diversity of the yeast Kluyveromyces marxianus in Italian cheeses. Microbial Genomics, 4(2). doi:10.1099/mgen.0.000153
    Turcotte, B., Liang, X. B., Robert, F. et al. (2010). Transcriptional regulation of nonfermentable carbon utilization in budding yeast. Federation of European Microbiological Societies Yeast Reviews, 10(1), 2-13. doi:10.1111/j.1567-1364.2009.00555.x
    Van Bogaert, I. N., De Maeseneire, S. L., De Schamphelaire, W. et al. (2007). Cloning, characterization and functionality of the orotidine-5'-phosphate decarboxylase gene (URA3) of the glycolipid-producing yeast Candida bombicola. Yeast, 24(3), 201-208. doi:10.1002/yea.1448
    Van Der Walt, J. P. (1956). Kluyveromyces- a new yeast genus of the Endomycetales. Antonie Van Leeuwenhoek, 22(3), 265-272. doi:10.1007/BF02538338
    Varela, J. A., Puricelli, M., Ortiz-Merino, R. A. et al. (2019). Origin of lactose fermentation in Kluyveromyces lactis by interspecies transfer of a neo-functionalized gene cluster during domestication. Current Biology, 29(24), 4284-4290 e4282. doi:10.1016/j.cub.2019.10.044
    Wacker, M. J., & Godard, M. P. (2005). Analysis of one-step and two-step real-time RT-PCR using SuperScript III. Journal of Biomolecular Techniques, 16(3), 266-271.
    Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/16461951
    Weirich, J., Goffrini, P., Kuger, P. et al. (1997). Influence of mutations in hexose-transporter genes on glucose repression in Kluyveromyces lactis. European Journal of Biochemistry, 249(1), 248-257. doi:10.1111/j.1432-1033.1997.t01-1-00248.x
    Werner-Washburne, M., Braun, E., Johnston, G. C. et al. (1993). Stationary phase in the yeast Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 57(2), 383-401. doi:10.1128/mr.57.2.383-401.1993
    Wesolowski-Louvel, M., Goffrini, P., Ferrero, I. et al. (1992). Glucose transport in the yeast Kluyveromyces lactis. I. Properties of an inducible low-affinity glucose transporter gene. Molecular Genetics and Genomics, 233(1-2), 89-96. doi:10.1007/BF00587565
    Wolfe, K. H., & Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387(6634), 708-713. doi:10.1038/42711
    Young, A. A. (1987). Dependence of the Monod kinetic parameters of E. coli on environmental conditions in aerobic batch culture. University College of Swansea, UK.
    Zhang, B., Ren, L., Zeng, S. et al. (2020). Functional analysis of PGI1 and ZWF1 in thermotolerant yeast Kluyveromyces marxianus. Applied Microbiology and Biotechnology, 104(18), 7991-8006. doi:10.1007/s00253-020-10808-4
    Zhang, Z., Moo-Young, M., & Chisti, Y. (1996). Plasmid stability in recombinant Saccharomyces cerevisiae. Biotechnology Advances, 14(4), 401-435. doi:10.1016/s0734-9750(96)00033-x
    Zheng, X., Shi, X., & Wang, B. (2021). A Review on the general cheese processing technology, flavor biochemical pathways and the influence of yeasts in cheese. Frontiers in Microbiology, 12, 703284. doi:10.3389/fmicb.2021.703284
    Zivanovic, Y., Wincker, P., Vacherie, B., Bolotin-Fukuhara, M., & Fukuhara, H. (2005). Complete nucleotide sequence of the mitochondrial DNA from Kluyveromyces lactis. Federation of European Microbiological Societies Yeast Reviews, 5(4-5), 315-322. doi:10.1016/j.femsyr.2004.09.003

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE