簡易檢索 / 詳目顯示

研究生: 黃鈺菀
Huang, Yu-Yuan
論文名稱: 利用iPS細胞進行口腔顎顏面組織再生之研究
Studies about the regeneration of oro-maxillofacial tissues using iPS cells
指導教授: 袁國
Yuan, Kuo
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 74
中文關鍵詞: 誘導性多能性幹細胞胚胎幹細胞口腔黏膜纖維母細胞慢病毒造骨細胞
外文關鍵詞: iPS, embryonic stem cells, oral mucosa fibroblast, lentivirus, osteoblast
相關次數: 點閱:98下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • iPS cells是指誘導性多能性幹細胞,具有與胚胎幹細胞(ES cells)相似的功能,目前已經可以從人類體組織製造出來,解決了胚胎幹細胞一直以來牽涉的倫理議題。研究指出,將Oct3/4、Sox2、c-Myc和Klf4四種基因一起送入人體的纖維母細胞後,能使人類體細胞進行重新組成,產生類似胚胎幹細胞的多能性幹細胞。先前在本實驗室研究癌症幹細胞時,在免疫組織化學染色法(immunohistochemistry;IHC)檢測下,發現人體的正常口腔黏膜組織有表現Oct3/4,所以在本實驗中,想更進一步確認人體口腔黏膜組織是否的確會產生Oct3/4,甚至更同時表現了其他iPS細胞特定的因子,進而研究口腔黏膜纖維母細胞(oral mucosa fibroblast;OMF)是否能成為製造iPS之好的來源。
    我們用免疫組織化學染色法檢測口腔黏膜組織切片,發現口腔黏膜組織有Oct3/4和Sox2的陽性反應。接著,我們培養口腔黏膜纖維母細胞,進一部探討是否口腔黏膜纖維母細胞也會表現Oct3/4與Sox2。我們從細胞收取蛋白質後,利用西方點墨法(Western blotting)做檢測,發現細胞並不表現Oct3/4及Sox2。儘管如此,由於口腔的細胞取得容易,所以我們假設,如果口腔細胞可以成功產生iPS細胞,對於製造iPS細胞而言,口腔細胞仍舊是一個很好的來源。因此我們想要利用慢病毒(lentivirus)系統,藉由病毒感染的方式將Oct3/4、Sox2、c-Myc和Klf4四種基因送入口腔纖維母細胞,期望能利用口腔的細胞成功產生iPS細胞,以致將來有助於研究iPS細胞對於疾病的治療。
    此外,我們也同時利用現有的老鼠iPS細胞,探討iPS細胞在疾病治療上的應用。我們使用帶有綠色螢光基因的老鼠iPS細胞,先將iPS細胞誘導分化成為造骨細胞(osteoblast),再將此分化後的細胞利用人工骨移植材料(骨粉)填補到老鼠頭蓋骨的缺損上,使之運用在老鼠頭蓋骨缺損的修復,接著使用免疫組織化學染色法觀察頭蓋骨的修復情形,並使用綠色螢光蛋白(GFP)染色,驗證這些細胞是從帶有綠色螢光基因的老鼠iPS細胞分化而來的。另外,我們也利用此老鼠iPS細胞帶有綠色螢光基因的特性,使用非侵入性活體影像偵測系統(in vivo imaging system;IVIS),觀察iPS細胞分化後的造骨細胞在老鼠體內分部的位置,進一步了解iPS細胞在牙科及顏面外科治療上的應用。

    Induced pluripotent stem (iPS) cells, which show similar functions to embryonic stem cells, can now be derived from human adult somatic tissues. Human embryonic stem cells research involves many ethical issues all the time, and the production of iPS cells now can avoid these issues. Recent researches have shown that introduction of Oct3/4, Sox2, c-Myc, and Klf4 into human fibroblast can reprogram human somatic cells, and generate ES-like pluripotent stem cells. In the previous studies of cancer stem cells in our laboratory, we found human normal oral mucosa tissues expressed Oct3/4 based on immunohistochemistry (IHC). In this research, we want to further confirm that whether human oral mucosa tissues can indeed produce Oct3/4, even more other defined factors, to study if oral mucosa fibroblast (OMF) is a good source to produce iPS cells.
    At first, we analyzed oral mucosa tissues by IHC and found that oral mucosa tissues expressed Oct3/4 and Sox2 by IHC. Then we used cell culture to further study whether oral mucosa fibroblast also expressed Oct3/4 and Sox2. We collected cell lysate from oral mucosa fibroblast to perform Western blotting and found OMF didn’t express Oct3/4 and Sox2 distinctly. Even so, we considered that it’s easy to get the oral cells. We hypothesized that if we can produce iPS cells by oral mucosa fibroblast successfully, oral mucosa fibroblast are still a good source to produce iPS cells. We tried to produce lentivirus to introduce Oct3/4, Sox2, c-Myc, and Klf4 into oral fibroblast. We expected to produce iPS successfully by oral cells and it will be useful to study disease therapy.
    On the other hand, we used mouse iPS cells, which we bought from Japan, to study the application of iPS cells on disease therapy. We tried to induce the mouse iPS cells, which expressed green fluorescence protein (GFP), to differentiate into osteoblast. Then we supplied the osteoblast to cranial osseous defect on mice by HA-TCP to enhance the regeneration of bony defect. We analyzed the repair of bony tissue by IHC, and we stained the bony tissue with green fluorescent protein to confirm these cells were differentiated by iPS cells which expressed green fluorescent protein. In addition, we also studied the distribution of these cells in the animal model by observing the position of the green fluorescence by using IVIS (in vivo imaging system). By this research, we’ll further understand the application of iPS cells on oral and maxillofacial surgery therapy.

    目錄 中文摘要 I Abstract III 誌謝 V 目錄 VI 圖目錄 X 英文縮寫檢索表 XI 第一章 緒論 1 一、幹細胞概論 1 二、胚胎幹細胞概論 2 1.老鼠胚胎幹細胞 (Mouse embryonic stem cells) 2 2.人類胚胎幹細胞 (human embryonic stem cells) 3 3.鹼性磷酸酶(alkaline phosphatase)與胚胎幹細胞的關係 3 三、iPS cells (induced pluripotent stem cells)概論 4 1.iPS cells的起源與製造 4 2.iPS cells的優點 5 3.iPS cels在臨床疾病治療上的應用 6 四、iPS cells分化成造骨細胞 7 五、骨誘導培養液Osteogenic medium (OGM) 7 1.Ascorbic Acid (A.A) 7 2.β-glycerophosphate (BGP) 8 3.Dexamethasone 9 六、研究動機 9 第二章 材料與方法 11 I.材料 11 【實驗儀器】 11 【試劑藥品】 12 【套裝實驗組】 15 【抗體】 15 【耗材】 16 II.方法 17 一、免疫組織化學染色 (Immunohistochemistry;IHC) 17 二、細胞培養 (Cell culture) 19 A.繼代培養 (Subculture) 21 B.iPS細胞培養 (iPS cells culture) 22 C.冷凍保存細胞 (Freezing cells) 22 D.解凍細胞 (Thawing cells) 23 E.細胞計數 (Cell counting) 23 三、細胞蛋白質萃取 (Protein extraction) 24 四、蛋白質濃度測定 (Protein assay) 25 五、SDS-PAGE 蛋白質電泳 (SDS-PAGE protein electrophoresis) 25 六、西方點墨法 (Western blot) 27 七、抽取質體 29 八、洋菜膠體電泳 (Agarose gel electrophoresis) 30 九、慢病毒的製備 (Lentivirus production) 31 十、慢病毒的定量 (Lentivirus titer determination) 33 十一、慢病毒的感染 (Lentivirus infection) 36 十二、細胞抗生素濃度測試 37 十三、誘導老鼠iPS細胞分化成為骨母細胞 37 十四、免疫細胞化學染色 (Immunocytochemistry;ICC) 38 十五、鹼性磷酸酶活性測試 (Alkaline phosphatase activity assay) 40 十六、Alizarin red staining 40 十七、動物實驗 (Animal model) 41 第三章 實驗結果 44 一、檢測Oct3/4和Sox2在口腔黏膜組織的表現 44 二、檢測Oct3/4和Sox2在人類口腔黏膜纖維母細胞內的表現 44 三、檢測IHC的結果是否為偽陽性表現 44 四、鑑定Oct3/4和Sox2質體 44 五、鑑定Oct3/4和Sox2慢病毒的濃度 45 六、鑑定老鼠iPS細胞 45 1.確認老鼠iPS細胞會表現綠色螢光 45 2.表現胚胎幹細胞標誌 45 七、鑑定造骨細胞 46 1.骨小結的形成 46 2.造骨細胞標誌的表現 46 八、造骨細胞幫助頭蓋骨缺損的修復情形 46 1.非侵入性醫學活體影像偵測系統(IVIS) 46 2.HE染色 47 3.免疫組織化學染色 47 第四章 實驗討論 48 第五章 結論 53 參考文獻 54 附圖 60 自述 74 圖目錄 圖一:Oct3/4在正常的人類口腔黏膜組織的表現 60 圖二:Sox2在正常的人類口腔黏膜組織的表現 61 圖三:Oct3/4在口腔黏膜纖維母細胞的表現 62 圖四:Sox2在口腔黏膜纖維母細胞的表現 63 圖五:免疫組織化學染色法 — 2。antibody alone 64 圖六:質體Oct3/4與Sox2的確認 65 圖七:Oct3/4與Sox2慢病毒的濃度測定 66 圖八:老鼠iPS細胞表現綠色螢光 67 圖九:胚胎幹細胞標誌在老鼠iPS細胞的表現 68 圖十:Alizarin red S染色觀察骨小結(bone nodule)的形成 69 圖十一:骨細胞標誌在造骨細胞內的表現 70 圖十二:以IVIS觀察老鼠體內螢光表現 71 圖十三:頭蓋骨新生情形 72 圖十四:頭蓋骨組織綠色螢光蛋白的表現 73

    Atmani, H., Chappard, D. & Basle, M. F. Proliferation and differentiation of osteoblasts and adipocytes in rat bone marrow stromal cell cultures: effects of dexamethasone and calcitriol. J Cell Biochem 89, (2) 364-372, (2003).
    Banovac, K. & Koren, E. Triiodothyronine stimulates the release of membrane-bound alkaline phosphatase in osteoblastic cells. Calcified Tissue Int 67, (6) 460-465, (2000).
    Bellows, C. G., Heersche, J. N. & Aubin, J. E. Inorganic phosphate added exogenously or released from beta-glycerophosphate initiates mineralization of osteoid nodules in vitro. Bone Miner 17, (1) 15-29, (1992).
    Beresford, J. N., Joyner, C. J., Devlin, C. & Triffitt, J. T. The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch Oral Biol 39, (11) 941-947, (1994).
    Blumberg, P., Brenner, R., Budny, S. & Kresse, H. Increased turnover of small proteoglycans synthesized by human osteoblasts during cultivation with ascorbate and beta-glycerophosphate. Calcif Tissue Int 60, (6) 554-560, (1997).
    Bosnali, M. & Edenhofer, F. Generation of transducible versions of transcription factors Oct4 and Sox2. Biol Chem 389, (7) 851-861, (2008).
    Chen, L., Scholler, J. & Foged, N. T. ALP induction by beta-glycerophosphate during the non-mineralization phase in vitro. J Tongji Med Univ 16, (1) 20-24, (1996).
    Cowan, C. M. et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22, (5) 560-567, (2004).
    Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, (5893) 1218-1221, (2008).
    Draper, J. S., Pigott, C., Thomson, J. A. & Andrews, P. W. Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat 200, (Pt 3) 249-258, (2002).
    Ebert, A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, (7227) 277-U271, (2009).
    Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, (5819) 154-156, (1981).
    Fenderson, B. A., Andrews, P. W., Nudelman, E., Clausen, H. & Hakomori, S. Glycolipid core structure switching from globo- to lacto- and ganglio-series during retinoic acid-induced differentiation of TERA-2-derived human embryonal carcinoma cells. Dev Biol 122, (1) 21-34, (1987).
    Ganta, D. R., McCarthy, M. B. & Gronowicz, G. A. Ascorbic acid alters collagen integrins in bone culture. Endocrinology 138, (9) 3606-3612, (1997).
    Harada, S., Matsumoto, T. & Ogata, E. Role of Ascorbic-Acid in the Regulation of Proliferation in Osteoblast-Like Mc3t3-E1 Cells. J Bone Miner Res 6, (9) 903-908, (1991).
    Harrison, G., Shapiro, I. M. & Golub, E. E. The Phosphatidylinositol-Glycolipid Anchor on Alkaline-Phosphatase Facilitates Mineralization Initiation in-Vitro. J Bone Miner Res 10, (4) 568-573, (1995).
    Henderson, J. K. et al. Preimplantation human embryos and embryonic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells 20, (4) 329-337, (2002).
    Huangfu, D. W. et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26, (7) 795-797, (2008).
    Huangfu, D. W. et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26, (11) 1269-1275, (2008).
    Hwang, Y. S., Polak, J. M. & Mantalaris, A. In Vitro Direct Osteogenesis of Murine Embryonic Stem Cells Without Embryoid Body Formation. Stem Cells Dev 17, (5) 963-970, (2008).
    Hwang, Y. S., Randle, W. L., Bielby, R. C., Polak, J. M. & Mantalaris, A. Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with HepG2-conditioned medium and modulation of the embryoid body formation period: Application to skeletal tissue engineering. Tissue Eng 12, (6) 1381-1392, (2006).
    Ishida, Y., Tertinegg, I. & Heersche, J. N. Progesterone and dexamethasone stimulate proliferation and differentiation of osteoprogenitors and progenitors for adipocytes and macrophages in cell populations derived from adult rat vertebrae. J Bone Miner Res 11, (7) 921-930, (1996).
    Kannagi, R. et al. Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series ganglioside isolated from human teratocarcinoma cells. EMBO J 2, (12) 2355-2361, (1983).
    Kannagi, R. et al. New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3. J Biol Chem 258, (14) 8934-8942, (1983).
    Kleinsmith, L. J. & Pierce, G. B., Jr. Multipotentiality of Single Embryonal Carcinoma Cells. Cancer Res 241544-1551, (1964).
    Knowles, B. B., Howe, C. C. & Aden, D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science 209, (4455) 497-499, (1980).
    Lowell, S., Benchoua, A., Heavey, B. & Smith, A. G. Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol 4, (5) e121, (2006).
    Lowry, W. E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 105, (8) 2883-2888, (2008).
    Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78, (12) 7634-7638, (1981).
    Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, (7200) 49-U41, (2008).
    Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26, (1) 101-106, (2008).
    Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, (7151) 313-317, (2007).
    Okita, K., Nakagawa, M., Hong, H. J., Ichisaka, T. & Yamanaka, S. Generation of Mouse Induced Pluripotent Stem Cells Without Viral Vectors. Science 322, (5903) 949-953, (2008).
    Oreffo, R. O. C., Cooper, C., Mason, C. & Clements, M. Mesenchymal stem cells - Lineage, plasticity, and skeletal therapeutic potential. Stem Cell Rev 1, (2) 169-178, (2005).
    Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, (5) 877-886, (2008).
    Park, I. H., Lerou, P. H., Zhao, R., Huo, H. & Daley, G. Q. Generation of human-induced pluripotent stem cells. Nat Protoc 3, (7) 1180-1186, (2008).
    Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, (7175) 141-146, (2008).
    Rathjen, J. et al. Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. Journal of Cell Science 112, (5) 601-612, (1999).
    Rathjen, J. & Rathjen, P. D. Mouse ES cells: experimental exploitation of pluripotent differentiation potential. Curr Opin Genet Dev 11, (5) 587-594, (2001).
    Seo, B. M. et al. SHED repair critical-size calvarial defects in mice. Oral Dis 14, (5) 428-434, (2008).
    Shamblott, M. J. et al. Derivation of pluripotent stem cells horn cultured human primordial germ cells. P Natl Acad Sci USA 95, (23) 13726-13731, (1998).
    Shevinsky, L. H., Knowles, B. B., Damjanov, I. & Solter, D. Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell 30, (3) 697-705, (1982).
    Smith, A. G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, (6200) 688-690, (1988).
    Solter, D. & Knowles, B. B. Monoclonal Antibody Defining a Stage-Specific Mouse Embryonic Antigen (Ssea-1). P Natl Acad Sci USA 75, (11) 5565-5569, (1978).
    Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced Pluripotent Stem Cells Generated Without Viral Integration. Science 322, (5903) 945-949, (2008).
    Taira, M., Nakao, H., Takahashi, J. & Araki, Y. Effects of two vitamins, two growth factors and dexamethasone on the proliferation of rat bone marrow stromal cells and osteoblastic MC3T3-E1 cells. J Oral Rehabil 30, (7) 697-701, (2003).
    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, (5) 861-872, (2007).
    Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, (4) 663-676, (2006).
    Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, (5391) 1145-1147, (1998).
    Wernig, M. et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol 26, (8) 916-924, (2008).
    Williams, R. L. et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature 336, (6200) 684-687, (1988).
    Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, (5858) 1917-1920, (2007).

    下載圖示 校內:2011-08-25公開
    校外:2011-08-25公開
    QR CODE