簡易檢索 / 詳目顯示

研究生: 林鍵融
Lin, Jian-Rung
論文名稱: 奈米壓痕陣列金面基板誘發表面增顯拉曼散射用於檢測特定蛋白質
Surface enhanced Raman scattering induced by Au nano-indented array for detecting specific protein
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 表面增顯拉曼散射奈米壓痕孔洞結構免標定定性染色標定定量
外文關鍵詞: surface-enhanced Raman scattering, nano-indentation, cavity structure, non-labeling qualification, dye-labeling quantification
相關次數: 點閱:87下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生醫檢測技術常使用抗體-抗原結合技術或是聚合酶連鎖反應,兩者皆需要時間以提高檢體的濃度來進行檢測。其中,核酸物質等需要分離純化之步驟,使檢測過程變得繁複。本研究採用增顯拉曼檢測基板技術,對於目標檢體之結構蛋白進行直接性的檢測,並提高檢測時之靈敏度,屬於免標定之定性檢測與染色標定之相對定量分析。本研究之增顯拉曼檢測基板為「倒多角錐型金奈米壓痕結構陣列」。
    奈米壓痕技術可在單一步驟下製作出精密度高之特異性孔洞結構陣列,其物理方式的製程也可以避免檢體受到殘留化學物質的汙染。其中,孔洞結構更可透過極精準之壓深施力與壓痕間距來控制,經由適當控制結構大小之奈米孔洞結構可以誘發表面電漿子侷限化之作用進而產生較大之表面增顯拉曼散射效果。本研究利用羅丹寧6G驗證壓痕結構大小與表面增顯拉曼散射之關係;利用小牛血清蛋白做為標準蛋白來進行免標定之定性檢測與染色標定之相對定量檢測。進一步同時利用具相似分子結構之B型肝炎病毒核心抗原及C型肝炎病毒核心抗原,評估此基板於免標定之定性檢測時之辨別力及再現性。染色標定之相對定量檢測選用具拉曼活性之染劑分子與檢測蛋白結合(如:考瑪斯亮藍G-250),以建立極低濃度下之相對定量分析。
    研究成果顯示:此奈米壓痕結構陣列於免標定之定性檢測時,能夠完整地呈現小牛血清蛋白之指紋特性拉曼圖譜,並能經由拉曼圖譜辨別兩相似分子結構之肝炎病毒核心抗原。染色標定之相對定量檢測濃度可以達到10-7~10-10莫耳濃度,且取檢體濃度之對數與染劑分子之最強特性峰拉曼強度之間呈線性關係。藉由定性及定量檢測之可行性,驗證了此基板的檢測過程可以減少檢測所需時間,且維持其精準度及靈敏度。因此,本研究之檢測基板用具表面增顯拉曼散射;可應用於早期生醫檢測用途。

    Bio-medical detection is frequently based on the techniques of antibody-based reactions and polymerase chain reactions. However, these methodologies follow time-consuming incubation steps; to obtain clearly isolated target species requires a complex process. The technique of surface-enhanced Raman scattering (SERS) is competent to provide higher sensitivity, resolution and dynamic analysis with non-labelling qualitative and dye-labelling quantitative analysis. In this study, we introduce “inverted triangular Au nano-indented cavities array” to induce SERS effect upon the substrate.
    Nano-indentation technique is a nano-mechanical method which can fabricate particular shape of nano-cavities array in one step, and it is also a physical technique with the advantage of preventing samples from residual chemical contaminations. This method provides an ideal option for the fabrication of nano-structured surface by controlling infinitesimal indented force and tip-to-tip displacements. These nano-cavities arrays would induce the localized surface plasmons (LSPs) effect by properly control the size of cavity structure and lead to significantly enhance Raman signals. Rhodamine 6G (R6G) molecules are used to infer the relationship between the size of cavity structure and SERS effect; bovine serum albumin (BSA) is used as standard protein to estimate un-labelling qualitative ability and dye-labelling quantitative ability; hepatitis B and C virus core antigens are used to estimate the discrimination and reproducibility during the non-labelling qualitative analysis. For dye-labelling quantification, proteins are combined with an existing Raman-active dye (e.g., Coomassie brilliant blue G-250, CBBG-250) to establish a relative quantitative analysis for further detection of low-concentration protein.
    These results demonstrated that nano-indented cavities array was competent to clearly characterize the bovine serum albumin with Raman spectrum, even to discriminate the difference of Raman spectra between two varied hepatitis virus core antigens. The distinguishable concentration for dye-lablelling proteins was 10-7~10-10 M within molar concentration, and furthermore there were linear dependent between Raman intensity and the logarithm of the concentration of proteins. Rely on the establishment of qualitative and quantitative techniques, it not only keeps highly sensitivity and accuracy, but also makes up the time-consuming shortage of bio-medical detection. Indeed, the development of SERS-actived substrate in this research could be applied to early bio-medical detection.

    摘要.....I Abstract........II 誌謝.....IV 目錄.....VI 表目錄...IX 圖目錄...X 第一章 緒論...... 1 1.1 緒論........ 1 1.2 研究動機.....3 1.3 文獻回顧.....5 1.3.1 表面增顯拉曼散射(surface enhanced Raman scattering, SERS)...5 1.3.2 結構特異性對於表面增顯拉曼散射效應之影響......5 1.3.3 孔洞型奈米結構對於表面增顯拉曼散射效應之影響....7 1.3.4 表面增顯拉曼散射應用於生醫檢測........10 1.4 研究目的.....11 第二章 理論基礎...13 2.1 振動光譜.....13 2.2 拉曼光譜基本理論......15 2.2.1 拉曼散射原理........15 2.2.2 拉曼光譜之極化誘發理論.......16 2.3 表面增顯拉曼散射光譜(surface enhanced Raman scattering, SERS)...18 2.3.1 表面電漿(surface plasmon)...19 2.3.2 電磁效應(electromagnetic effect)...21 2.3.3 電磁效應衍生現象....23 2.3.4 化學效應(chemical effect)...24 2.4 肝炎病毒核心抗原簡介(hepatitis virus core antigen)....25 第三章 材料與方法.....26 3.1 實驗設計與流程........26 3.1.1 實驗構想...26 3.1.2 實驗設計...28 3.2 實驗材料與製備........29 3.2.1 鍍金基板製作........29 3.2.2 拉曼活性基板製作....30 3.2.3 分子探針溶液製備....32 3.2.4 生物蛋白選用........33 3.2.5 拉曼檢測與訊號處理...34 3.3 製程儀器.....35 3.3.1 電子束蒸鍍機........35 3.3.2 奈米壓痕試驗機......36 3.4 分析儀器.....38 3.4.1 掃描式電子顯微鏡....38 3.4.2 顯微拉曼光譜儀......39 第四章 結果與討論...41 4.1 顯微拉曼光譜之校正與分析......41 4.1.1 顯微拉曼光譜儀雷射強度之校正..41 4.1.2 扣除背景螢光效應之基線化處理..42 4.1.3 增顯因子(enhancement factor, EF)之分析評估..43 4.1.4 評估SERS效能用:R6G分子探針..44 4.2 奈米壓痕結構陣列於SERS影響之分析........45 4.2.1 奈米壓痕結構陣列表面形貌之分析........45 4.2.2 具SERS效應基板之增顯因子評估分析......47 4.3 生物蛋白檢測應用分析...52 4.3.1 蛋白質分子圖譜定性檢測分析...52 4.3.2 蛋白質分子染色定量檢測分析...60 第五章 結論......67 參考文獻..68

    1.R. A. Tripp, R. A. Dluhy, and Y. Zhao, “Novel nanostructure for SERS biosensing”, Nano Today, Vol. 3, 31-37, 2008.
    2.黃國柱, 辛玉麟和賴俊邑, “奈米材料於生醫檢驗之應用”, Chemistry, Vol. 64, 295-304, 2006.
    3.A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney, and M. J. Natan, “Raman spectroscopy”, Analytical Chemistry, Vol. 70, 341-362, 1998.
    4.D. A. Long, “Raman spectroscopy”, McGraw-Hill, 1977.
    5.M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode”, Chemical Physics Letters, Vol. 26, 163-166, 1974.
    6.K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics”, Journal of Physics: Condensed Matter, Vol. 14, R597-R624, 2002.
    7.D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian, “Electrochemical surface-enhanced Raman spectroscopy of nanostructures”, Chemical Society Reviews, Vol. 37, 1025–1041, 2008.
    8.M. G. Albrecht and J. A. Creighton, “Anomalously intense Raman spectra of pyridine at a silver electrode”, Journal of the American Chemical Society, Vol. 99, 5215-5217, 1977.
    9.D. L. Jeanmarie and R. P. V. Duyne, “Surface Raman spectroelectrochemisty: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode”, Journal of Electroanalytical Chemistry, Vol. 84, 1-20, 1977.
    10.K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS)”, Physical Review Letters, Vol. 78, 1667-1670, 1997.
    11.H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering”, Physical Review Letters, Vol. 83, 4357-4360, 1999.
    12.S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy, and R. A. Tripp, “Rapid and sensitive detection of respiratory virus molecular signatures using a silver nanorod array SERS substrate”, Nano Letters, Vol. 6, 2630-2636, 2006.
    13.T. A. Alexander and D. M. Le, “Characterization of a commercialized SERS-active substrate and its application to the identification of intact Bacillus endospores”, Applied Optics, Vol. 46, 3878-3890, 2007.
    14.S. Abdali, B. D. Laere, M. Poulsen, M. Grigorian, E. Lukanidin, and J. Klingelhofer, “Toward methodology for detection of cancer-promoting S100A4 protein conformations in subnanomolar concentrations using Raman and SERS”, The Journal of Physical Chemistry C, Vol. 114, 7274-7279, 2010.
    15.X. X. Han, L. Chen, J. Guo, B. Zhao, and Y. Ozaki, “Coomassie brilliant dyes as surface-enhanced Raman scattering probes for protein-ligand recognitions”, Analytical Chemistry, Vol. 82, 4102-4106, 2010.
    16.Q. Yu and G. Golden, “Probing the protein orientation on charged self-assembled monolayers on gold nanohole arrays by SERS”, Langmuir, Vol. 23, 8659-8662, 2007.
    17.X. Qian, X. H. Peng, D. O. Ansari, Q. Y. Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags”, Nature Biotechnology, Vol. 26, 83-90, 2007.
    18.K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. S. Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles”, Applied Spectroscopy, Vol. 56, 150-154, 2002.
    19.J. D. Driskell, K. M. Kwarta, R. J. Lipert, and M. D. Porter, “Low-level detection of viral pathogens by a surface-enhanced Raman scattering based immunoassay”, Analytical Chemistry, Vol. 77, 6147-6154, 2005.
    20.N. P. W. Pieczonka and R. F. Aroca, “Single molecule analysis by surface-enhanced Raman scattering”, Chemical Society Reviews, Vol. 37, 946-954, 2008.
    21.M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective”, Journal of Raman Spectroscopy, Vol. 36, 485-496, 2005.
    22.G. H. Gu, J. Kim, L. Kim, and J. S. Suh, “Optimum length of silver nanorods for fabrication of hot spots”, The Journal of Physical Chemistry C, Vol. 111, 7906-7909, 2007.
    23.B. L. Broglin, A. Andreu, N. Dhussa, J. A. Heath, Jr., J. Gerst, B. Dudley, D. Holland, and M. E. Kouedi, “Investigation of the effects of the local environment on the surface-enhanced Raman spectra of striped gold/silver nanorod arrays”, Langmuir, Vol. 23, 4563-4568, 2007.
    24.C. Ruan, G. Eres, W. Wang, Z. Zhang, and B. Gu, “Controlled fabrication of nanopillar arrays as active substrates for surface-enhanced Raman spectroscopy”, Langmuir, Vol. 23, 5760-5757, 2007.
    25.M. A. D. Jesus, K. S. Giesfeldt, J. M. Oran, N. A. A. Hatab, N. V. Lavrik, and M. J. Sepaniak, “Nanofabrication of densely packed metal–polymer arrays for surface-enhanced Raman spectrometry”, Applied Spectroscopy, Vol. 59, 1501-1508, 2005.
    26.M. Sackmann, S. Bom, T. Balster, and A. Materny, “Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy”, Journal of Raman Spectroscopy, Vol. 38, 277-282, 2007.
    27.L. Billot, M. L. d. l. Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J. L. Bijeon, P. M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement”, Chemical Physics Letters, Vol. 422, 303-307, 2006.
    28.R. A. Puebla, B. Cui, J. P. B. Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface plasmon resonances”, The Journal of Physical Chemistry C, Vol. 111, 6720-6723, 2007.
    29.X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. V. Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography”, IEE Proceedings Nanobiotechnology, Vol. 152, 195-206, 2005.
    30.J. Biener, A. M. Hodge, J. R. Hayes, C. A. Volkert, L. A. Zepeda-Ruiz, A. V. Hamza, and F. F. Abraham, “Size effects on the mechanical behavior of nanoporous Au”, Nano Letters, Vol. 6, 2379-2382, 2006.
    31.Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo, and R. Gordon, “Localized Raman enhancement from a double-hole nanostructure in a metal film”, The Journal of Physical Chemistry C, Vol. 112, 15098-15101, 2008.
    32.X. Zhou, Q. Wei, K. Sun, and L. Wang, “Formation of ultrafine uniform gold nanoparticles by sputtering and redeposition”, Applied Physics Letters, Vol. 94, 133107-133103, 2009.
    33.J. D. Driskell, S. Shanmukh, Y. Liu, S. B. Chaney, X. J. Tang, Y. P. Zhao, and R. A. Dluhy, “The use of aligned silver nanorod arrays prepared by oblique angle deposition as surface enhanced Raman scattering substrates”, The Journal of Physical Chemistry C, Vol. 112, 895-901, 2008.
    34.C. W. Chang and J. D. Liao, “Nano-indentation at the surface contact level: applying a harmonic frequency for measuring contact stiffness of self-assembled monolayers adsorbed on Au”, Nanotechnology, Vol. 19, 31573, 2008.
    35.Y. T. Yang, J. D. Liao, Y. L. Lee, C. W. Chang, and H. J. Tsai, “Ultra-thin phospholipid layers physically adsorbed upon glass characterized by nano-indentation at the surface contact level”, Nanotechnology, Vol. 20, 195702, 2009.
    36.E. J. Liang and W. Kiefer, “Chemical effect of SERS with near-infrared excitation”, Journal of Raman Spectroscopy, Vol. 27, 879-885, 1996.
    37.J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces”, Journal of Chemical Physics, Vol. 73, 3023-3037, 1980.
    38.Z. Q. Tian, B. Ren, and D. Y. Wu, “Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures”, The Journal of Physical Chemistry B, Vol. 106, 9463-9483, 2002.
    39.S. Kawata, Y. Inouye, and P. Verma, “Plasmonics for near-field nano-imaging and superlensing”, Nature Photonics, Vol. 3, 388-394, 2008.
    40.L. Du, X. Zhang, T. Mei, and X. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS”, Optics Express, Vol. 18, 1959-1965, 2010.
    41.T. A. Kelf, Y. Sugawara, R. M. Cole, and J. J. Baumberg, “Localized and delocalized plasmons in metallic nanovoids”, Physical Review B, Vol. 74, 245415, 2006.
    42.N. M. B. Perney, J. J. Baumberg, M. E. Zoorob, M. D. B. Charlton, S. Mahnkopf, and C. M. Netti, “Tuning localized plasmons in nanostructured substrates for surface-enhanced Raman scattering”, Optics Express, Vol. 14, 847-857, 2006.
    43.K. C. Vernon, T. J. Davis, F. H. Scholes, D. E. G´omez, and D. Lau, “Physicalmechanisms behind the SERS enhancement of pyramidal pit substrates”, Journal of Raman Spectroscopy, Vol. 41, 1106–1111, 2010.
    44.N. M. B. Perney, F. J. G. d. Abajo, J. J. Baumberg, A. Tang, M. C. Netti, M. D. B. Charlton, and M. E. Zoorob, “Tuning localized plasmon cavities for optimized surface-enhanced Raman scattering”, Physical Review B, Vol. 76, 035426, 2007.
    45.C. W. Chang, J. D. Liao, Y. Y. Lin, and C. C. Weng, “Detecting very small quantity of molecular probes in solution using nano-mechanically made Au-cavitiesarray with SERS-active effect”, Sensors and Actuators B:Chemical, Vol. 153, 271-276, 2011.
    46.N. J. Kim, “Physical origins of chemical enhancement of surface-enhanced Raman spectroscopy on a gold nanoparticle-coated polymer”, The Journal of Physical Chemistry C, Vol. 114, 13979–13984, 2010.
    47.N. Ohta and I. Yagi, “In situ surface-enhanced Raman scattering spectroscopic study of pyridine adsorbed on gold electrode surfaces comprised of plasmonic crystal structures”, The Journal of Physical Chemistry C, Vol. 112, 17603–17610, 2008.
    48.C. Chen, J. A. Hutchison, P. V. Dorpe, R. Kox, I. D. Vlaminck, H. Uji, J. Hofkens, L. Lagae, G. Maes, and G. Borghs, “Focusing plasmons in nanoslits for surface-enhanced Raman scattering”, Small, Vol. 5, 2876-2882, 2009.
    49.G. Keresztury, “Raman spectroscopy: theory, handbook of vibrational spectroscopy”, John Wiley & Sons, Vol. 1, 71, 2001.
    50.汪建民, “材料分析”, 中國材料科學學會, 73-82, 1998.
    51.謝雲生, “雷射拉曼光譜簡介”,物理雙月刊, 7期1卷, 25, 1985.
    52.Skoog and H. Nieman, “Raman spectroscopy, principles of instrumental analysis 5/e”, Harcourt Brace & Company, 429-430, 1998.
    53.J. R. Ferraro and K. Nakamoto, “Introduction Raman spectroscopy”, Academic Press, 1-25, 1994.
    54.L. Richard and McCreery, “Raman spectroscopy for chemical analysis”, New York: Wiley Interscience, Vol. 157, 2000.
    55.吳民耀和劉威志, “表面強化拉曼散射”, 物理雙月刊, 2期4卷, 486-495, 2006.
    56.M. Moskovits, K. Kneipp, and H. Kneipp, “Surface-enhanced Raman scattering: physics and applications”, Springer, 2-40, 2006.
    57.D. G. Yu, W. C. Lin, C. H. Lin, L. M. Chang, and M. C. Yang, “An in situ reduction method for preparing silver/poly (vinyl alcohol)nanocomposite as surface-enhanced Raman scattering (SERS)-active substrates,” Materials Chemistry and Physics, Vol. 101, 93-98, 2007.
    58.A. Otto, “In light scattering in solids IV. electronic scattering, spin effects, SERS and morphic effects”, Sptinger-Verlag, 289, 1984
    59.X. X. Han, H. Y. Jia, Y. F. Wang, Z. C. Lu, C. X. Wang, W. Q. Xu, B. Zhao, and Y. Ozaki, “Analytical technique for label-free multi-protein detection based on western blot and surface-enhanced Raman scattering”, Analytical Chemistry, Vol. 80, 2799-2804, 2008.
    60.M. C. Chen and R. C. Lord, “Laser-excited Raman spectroscopy of biomolecules. VIII. conformational study of bovine serum albumin”, Journal of the American Chemical Society, 990-992, 1976.
    61.R. J. Jakobsen and F. M. Wasacz, “Infrared spectra-structure correlations and adsorption behavior for helix proteins”, Applied Spectroscopy, Vol. 44, 1478-1490, 1990.
    62.A. Meade, F. Lyng, P. Knief, and H. J. Byrne, “Growth substrate induced functional changes elucidated by FTIR and Raman spectroscopy in in-vitro cultured human keratinocytes”, Analytical and Bioanalytical Chemistry, Vol. 387, 1718-1728, 2007.

    下載圖示 校內:2016-07-26公開
    校外:2016-07-26公開
    QR CODE