| 研究生: |
鄭婉廷 Jheng, Wan-Ting |
|---|---|
| 論文名稱: |
黃芩增強阿黴素在乳癌細胞的化療敏感性 Baicalin Enhances Chemosensitivity of Doxorubicin in Breast Cancer Cells |
| 指導教授: |
蔡昆霖
Tsai, Kun-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 物理治療學系 Department of Physical Therapy |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 阿徽素 、黃芩 、化療敏感性 、細胞凋亡 |
| 外文關鍵詞: | Doxorubicin, Baicalin, chemosensitivity, apoptosis |
| 相關次數: | 點閱:137 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿黴素在乳癌治療中是一種相當有效的蒽環類化療藥物;儘管如此,相關的化療副作用相繼出現,其中最常見的副作用即是心臟毒性,此副作用會導致不可逆的生理現象產生,包含肌原纖維的損傷、下降的左心室射出率最後可能導致慢性的心臟衰竭;另外在微觀的細胞恆定上也會出現細胞毒性最後導致細胞走向凋亡。有鑑於阿徽素在乳癌治療上產生的副作用,特別是心臟毒性的產生,本研究擬探討中草藥萃取物黃芩結合阿徽素是否能有效提高乳癌細胞對化療藥物的敏感性,進而在未來治療上提供另一方向的參考。本實驗中細胞凋亡的發生是由於黃芩與阿徽素共同使用下使得細胞內過多的自由基產生,細胞內過多自由基會干擾內質網的恆定系統使得過多的鈣離子被釋放至細胞質和粒線體當中。過多的鈣離子累積於粒線體中會導致粒線體膜電位去極化;Bcl-2 家族能調節去極化的粒線體膜電位藉由釋放粒線體膜間腔的cytochrome c 至細胞質中,而 cytochrome c 接著會在粒線體引起的凋亡路徑中引發一系列
的反應使 cleaved caspase-9 與凋亡體結合進而活化下游caspase-3 最後導致細胞凋亡。另外,在受體配體結合的凋亡路徑中,磷酸化 p38 MAPK 以及磷酸化 ERK 1/2 蛋白可視為合作夥伴,在 DNA 模板中的轉錄調節區間接地調節轉錄因子 NF-κB 在細胞中的表現。細胞內 ROS過
多的情形下,NF-κB 會藉由附著其上 IκB 的降解而活化,因此由細胞質易位至細胞核當中開始其在 DNA 轉錄過程中轉錄調節因子的角色,在轉錄出的 mRNA 中包含了與細胞凋亡相關的Bcl-2 家族成員。根據以上實驗發現,中草藥萃取物黃芩結合阿徽素的抗癌效果在 ROS-ER stress-intrinsic mitochondrial pathway 當中確實可顯著地被提升因此增加癌細胞的化療敏感性導致細胞毒性產生;在未來臨床乳癌治療上更多的機轉還需要再更進一步地研究探討,儘管本實驗仍有許多不足之處,然而或許再治療上可提供輔助上的參考。
Doxorubicin is a powerful anthracycline chemotherapeutic agent for treatment of breast cancer;irrespective of the critical influence towards doxorubicin, some of the side effects are also detected,cardiotoxicity, for paradigm, will lead to an irreversible alteration in physiological system which maybe decreased left ventricular ejection fraction, loss of myofibrils and heart failure as well as in microscopic environment leading to apoptosis in cells. On account of those advance side effects particularly in cardiotoxicity, this study will explore whether the combined treatment of extraction of Chinese herbal medicine, baicalin, on doxorubicin could effectively fascinate or heighten the potential force of chemosensitivity to breast cancer cells. Cellular apoptosis occurs when excessive intracellular ROS is generated, triggered by dual intervention of baicalin and doxorubicin, which disturb the homeostasis in endoplasmic reticulum (ER) resulting to liberation of numerous calcium ion(Ca2+) into cytoplasm and mitochondria. Multitudinous Ca2+ exhibit in mitochondria giving rise to depolarized mitochondrial membrane potential (△Ψm) postdated by modulation of Bcl-2 family membranes prior
to the release of soluble mitochondrial intermembrane proteins(SIMPs) such as cytochrome c succeeded by a series cascade to recruit cleaved-caspase-9 and sequentially activate caspase-3 inducing cell apoptosis via intrinsic pathway. The proteins, phosphorylated p38 MAPK and phospho-ERK 1/2, reside in extrinsic pathway are recognized as cooperators to function on transcriptional
regulation of DNA templet which modulate NF-κB performance obliquely. In the stressful intracellular
environment, NF-κB is activated by degradation of I-κB and translocates into nucleus to conduct gene encoding for apoptosis-required factors, such as Bcl-2 family, which event is linked to intrinsic pathway. Upon the findings in this research, we could demonstrate the effect of baicalin on doxorubicin could enhance cytotoxicity to breast cancer cells via ROS-ER stress-intrinsic mitochondrial pathway and perhaps could lessen the dosage of doxorubicin and explore more of associated mechanism in combined treatment for breast cancer clinic intervention in the future.
1. Singal, P.K., et al., Adriamycin-induced heart failure: mechanism and modulation. Mol
Cell Biochem, 2000. 207(1-2): p. 77-86.
2. Siveski-Iliskovic, N., et al., Probucol protects against adriamycin cardiomyopathy
without interfering with its antitumor effect. Circulation, 1995. 91(1): p. 10-5.
3. Li, T., I. Danelisen, and P.K. Singal, Early changes in myocardial antioxidant enzymes
in rats treated with adriamycin. Mol Cell Biochem, 2002. 232(1-2): p. 19-26.
4. Gewirtz, D.A., A critical evaluation of the mechanisms of action proposed for the
antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin.
Biochem Pharmacol, 1999. 57(7): p. 727-41.
5. Pilco-Ferreto, N. and G.M. Calaf, Influence of doxorubicin on apoptosis and oxidative
stress in breast cancer cell lines. Int J Oncol, 2016. 49(2): p. 753-62.
6. Miller, D.M., G.R. Buettner, and S.D. Aust, Transition metals as catalysts of
"autoxidation" reactions. Free Radic Biol Med, 1990. 8(1): p. 95-108.
7. Valko, M., et al., Free radicals and antioxidants in normal physiological functions and
human disease. Int J Biochem Cell Biol, 2007. 39(1): p. 44-84.
8. Fridovich, I., Superoxide radical and superoxide dismutases. Annu Rev Biochem, 1995.
64: p. 97-112.
9. Chelikani, P., I. Fita, and P.C. Loewen, Diversity of structures and properties among
catalases. Cell Mol Life Sci, 2004. 61(2): p. 192-208.
10. Drevet, J.R., The antioxidant glutathione peroxidase family and spermatozoa: a
complex story. Mol Cell Endocrinol, 2006. 250(1-2): p. 70-9.
11. Sterba, M., et al., Oxidative stress, redox signaling, and metal chelation in anthracycline
cardiotoxicity and pharmacological cardioprotection. Antioxid Redox Signal, 2013.
18(8): p. 899-929.
12. Minotti, G., G. Cairo, and E. Monti, Role of iron in anthracycline cardiotoxicity: new
tunes for an old song? FASEB J, 1999. 13(2): p. 199-212.
13. Myers, C., The role of iron in doxorubicin-induced cardiomyopathy. Semin Oncol, 1998.
25(4 Suppl 10): p. 10-4.
14. Laurent, G. and J.P. Jaffrezou, Signaling pathways activated by daunorubicin. Blood,
2001. 98(4): p. 913-24.
15. Martin, D., et al., Ceramide and reactive oxygen species generated by H2O2 induce
caspase-3-independent degradation of Akt/protein kinase B. J Biol Chem, 2002. 277(45):
p. 42943-52.
16. Rizzuto, R., et al., Close contacts with the endoplasmic reticulum as determinants of
mitochondrial Ca2+ responses. Science, 1998. 280(5370): p. 1763-6.
17. Voeltz, G.K., M.M. Rolls, and T.A. Rapoport, Structural organization of the
endoplasmic reticulum. EMBO Rep, 2002. 3(10): p. 944-50.
18. Breckenridge, D.G., et al., Regulation of apoptosis by endoplasmic reticulum pathways.
Oncogene, 2003. 22(53): p. 8608-18.
19. Rizzuto, R. and T. Pozzan, Microdomains of intracellular Ca2+: molecular
determinants and functional consequences. Physiol Rev, 2006. 86(1): p. 369-408.
20. Rao, R.V., H.M. Ellerby, and D.E. Bredesen, Coupling endoplasmic reticulum stress to
the cell death program. Cell Death Differ, 2004. 11(4): p. 372-80.
21. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4):
p. 495-516.
22. Savill, J. and V. Fadok, Corpse clearance defines the meaning of cell death. Nature,
2000. 407(6805): p. 784-8.
23. Ashkenazi, A. and V.M. Dixit, Death receptors: signaling and modulation. Science,
1998. 281(5381): p. 1305-8.
24. Schaeffer, H.J. and M.J. Weber, Mitogen-activated protein kinases: specific messages
from ubiquitous messengers. Mol Cell Biol, 1999. 19(4): p. 2435-44.
25. Chen, F., et al., New insights into the role of nuclear factor-kappaB, a ubiquitous
transcription factor in the initiation of diseases. Clin Chem, 1999. 45(1): p. 7-17.
26. Green, D.R. and G. Kroemer, The pathophysiology of mitochondrial cell death. Science,
2004. 305(5684): p. 626-9.
27. Fesik, S.W., Insights into programmed cell death through structural biology. Cell, 2000.
103(2): p. 273-82.
28. Hengartner, M.O., The biochemistry of apoptosis. Nature, 2000. 407(6805): p. 770-6.
29. Zong, W.X., et al., BH3-only proteins that bind pro-survival Bcl-2 family members fail
to induce apoptosis in the absence of Bax and Bak. Genes Dev, 2001. 15(12): p. 1481-
6.
30. Cheng, E.H., et al., BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing
BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell, 2001. 8(3): p. 705-11.
31. Li, P., et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex
initiates an apoptotic protease cascade. Cell, 1997. 91(4): p. 479-89.
32. Ishimaru, K., et al., Two flavone 2'-glucosides from Scutellaria baicalensis.
Phytochemistry, 1995. 40(1): p. 279-81.
33. Bochorakova, H., et al., Main flavonoids in the root of Scutellaria baicalensis cultivated
in Europe and their comparative antiradical properties. Phytother Res, 2003. 17(6): p.
640-4.
34. Dinda, B., et al., Therapeutic potentials of baicalin and its aglycone, baicalein against
inflammatory disorders. Eur J Med Chem, 2017. 131: p. 68-80.
35. Wang, L., et al., Flavonoid baicalein suppresses adhesion, migration and invasion of
MDA-MB-231 human breast cancer cells. Cancer Lett, 2010. 297(1): p. 42-8.
36. Shao, Z.H., et al., Baicalein attenuates oxidant stress in cardiomyocytes. Am J Physiol
Heart Circ Physiol, 2002. 282(3): p. H999-H1006.
37. Shao, Z.H., et al., Extract from Scutellaria baicalensis Georgi attenuates oxidant stress
in cardiomyocytes. J Mol Cell Cardiol, 1999. 31(10): p. 1885-95.
38. Zhou, Q.M., et al., The combination of baicalin and baicalein enhances apoptosis via
the ERK/p38 MAPK pathway in human breast cancer cells. Acta Pharmacol Sin, 2009.
30(12): p. 1648-58.
39. Chen, H., et al., Exploring therapeutic potentials of baicalin and its aglycone baicalein
for hematological malignancies. Cancer Lett, 2014. 354(1): p. 5-11.
40. Kang, S., et al., Baicalin effects on rats with spinal cord injury by anti-inflammatory
and regulating the serum metabolic disorder. J Cell Biochem, 2018.
41. Wang, N., et al., Apoptosis induced by baicalin involving up-regulation of P53 and bax
in MCF-7 cells. J Asian Nat Prod Res, 2008. 10(11-12): p. 1129-35.
42. Deberardinis, R.J., et al., Brick by brick: metabolism and tumor cell growth. Curr Opin
Genet Dev, 2008. 18(1): p. 54-61.
43. Vander Heiden, M.G., L.C. Cantley, and C.B. Thompson, Understanding the Warburg
effect: the metabolic requirements of cell proliferation. Science, 2009. 324(5930): p.
1029-33.
44. Chan, F.K., K. Moriwaki, and M.J. De Rosa, Detection of necrosis by release of lactate
dehydrogenase activity. Methods Mol Biol, 2013. 979: p. 65-70.
45. Maes, M., et al., Measurement of Apoptotic and Necrotic Cell Death in Primary
Hepatocyte Cultures. Methods Mol Biol, 2015. 1250: p. 349-61.
46. Pelicano, H., et al., Glycolysis inhibition for anticancer treatment. Oncogene, 2006.
25(34): p. 4633-46.
47. Minotti, G., et al., Anthracyclines: molecular advances and pharmacologic
developments in antitumor activity and cardiotoxicity. Pharmacol Rev, 2004. 56(2): p.
185-229.
48. Yoshihisa, Y., et al., SOD/catalase mimetic platinum nanoparticles inhibit heat-induced
apoptosis in human lymphoma U937 and HH cells. Free Radic Res, 2011. 45(3): p. 326-
35.
49. Jawaid, P., et al., Effects of SOD/catalase mimetic platinum nanoparticles on radiation-
induced apoptosis in human lymphoma U937 cells. Apoptosis, 2014. 19(6): p. 1006-16.
50. Clapham, D.E., Calcium signaling. Cell, 2007. 131(6): p. 1047-58.
51. Giorgi, C., et al., Ca2+ signaling, mitochondria and cell death. Curr Mol Med, 2008.
8(2): p. 119-30.
52. Droge, W., Free radicals in the physiological control of cell function. Physiol Rev, 2002.
82(1): p. 47-95.
53. Esteve, J.M., et al., Oxidative damage to mitochondrial DNA and glutathione oxidation
in apoptosis: studies in vivo and in vitro. FASEB J, 1999. 13(9): p. 1055-64.
54. Cuadrado, A. and A.R. Nebreda, Mechanisms and functions of p38 MAPK signalling.
Biochem J, 2010. 429(3): p. 403-17.
55. Raman, M., W. Chen, and M.H. Cobb, Differential regulation and properties of MAPKs.
Oncogene, 2007. 26(22): p. 3100-12.
56. Beg, A.A. and D. Baltimore, An essential role for NF-kappaB in preventing TNF-alpha-
induced cell death. Science, 1996. 274(5288): p. 782-4.
57. Wang, C.Y., M.W. Mayo, and A.S. Baldwin, Jr., TNF- and cancer therapy-induced
apoptosis: potentiation by inhibition of NF-kappaB. Science, 1996. 274(5288): p. 784-
7.
58. Juarez-Salinas, H., J.L. Sims, and M.K. Jacobson, Poly(ADP-ribose) levels in
carcinogen-treated cells. Nature, 1979. 282(5740): p. 740-1.
59. Ame, J.C., C. Spenlehauer, and G. de Murcia, The PARP superfamily. Bioessays, 2004.
26(8): p. 882-93.
60. Liu, X., et al., Induction of apoptotic program in cell-free extracts: requirement for
dATP and cytochrome c. Cell, 1996. 86(1): p. 147-57.
61. Fulda, S. and K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer
chemotherapy. Oncogene, 2006. 25(34): p. 4798-811.
62. Gavrieli, Y., Y. Sherman, and S.A. Ben-Sasson, Identification of programmed cell death
in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol, 1992. 119(3): p.
493-501.
63. Eriksson, S., et al., Binding of 4',6-diamidino-2-phenylindole (DAPI) to AT regions of
DNA: evidence for an allosteric conformational change. Biochemistry, 1993. 32(12): p.
2987-98.
64. Tarnowski, B.I., F.G. Spinale, and J.H. Nicholson, DAPI as a useful stain for nuclear
quantitation. Biotech Histochem, 1991. 66(6): p. 297-302.
65. Zink, D., N. Sadoni, and E. Stelzer, Visualizing chromatin and chromosomes in living
cells. Methods, 2003. 29(1): p. 42-50.
66. Pietkiewicz, S., J.H. Schmidt, and I.N. Lavrik, Quantification of apoptosis and
necroptosis at the single cell level by a combination of Imaging Flow Cytometry with
classical Annexin V/propidium iodide staining. J Immunol Methods, 2015. 423: p. 99-
103.
67. Vermes, I., et al., A novel assay for apoptosis. Flow cytometric detection of
phosphatidylserine expression on early apoptotic cells using fluorescein labelled
Annexin V. J Immunol Methods, 1995. 184(1): p. 39-51.
68. Koopman, G., et al., Annexin V for flow cytometric detection of phosphatidylserine
expression on B cells undergoing apoptosis. Blood, 1994. 84(5): p. 1415-20.
69. Rieger, A.M., et al., Modified annexin V/propidium iodide apoptosis assay for accurate
assessment of cell death. J Vis Exp, 2011(50).
70. Xu, M. and M. Ashraf, Melatonin protection against lethal myocyte injury induced by
doxorubicin as reflected by effects on mitochondrial membrane potential. J Mol Cell
Cardiol, 2002. 34(1): p. 75-9.
71. Cossarizza, A., et al., Protective effect of N-acetylcysteine in tumor necrosis factor-
alpha-induced apoptosis in U937 cells: the role of mitochondria. Exp Cell Res, 1995.
220(1): p. 232-40.
72. Perelman, A., et al., JC-1: alternative excitation wavelengths facilitate mitochondrial
membrane potential cytometry. Cell Death Dis, 2012. 3: p. e430.
73. Dive, C. and J.A. Hickman, Drug-target interactions: only the first step in the
commitment to a programmed cell death? Br J Cancer, 1991. 64(1): p. 192-6.
74. Sultana, H., et al., Chemosensitivity and p53-Bax pathway-mediated apoptosis in
patients with uterine cervical cancer. Ann Oncol, 2003. 14(2): p. 214-9.
75. Martin, S.J., D.R. Green, and T.G. Cotter, Dicing with death: dissecting the components
of the apoptosis machinery. Trends Biochem Sci, 1994. 19(1): p. 26-30.
76. Li, Y., et al., Baicalin promotes neuronal differentiation of neural stem/progenitor cells
through modulating p-stat3 and bHLH family protein expression. Brain Res, 2012. 1429:
p. 36-42.
77. Turrens, J.F., Mitochondrial formation of reactive oxygen species. J Physiol, 2003.
552(Pt 2): p. 335-44.
78. Berridge, M.J., M.D. Bootman, and H.L. Roderick, Calcium signalling: dynamics,
homeostasis and remodelling. Nat Rev Mol Cell Biol, 2003. 4(7): p. 517-29.
79. Demaurex, N. and C. Distelhorst, Cell biology. Apoptosis--the calcium connection.
Science, 2003. 300(5616): p. 65-7.
80. Rapizzi, E., et al., Recombinant expression of the voltage-dependent anion channel
enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol, 2002. 159(4):
p. 613-24.
81. Gincel, D., H. Zaid, and V. Shoshan-Barmatz, Calcium binding and translocation by the
voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial
function. Biochem J, 2001. 358(Pt 1): p. 147-55.
82. Colombini, M., VDAC: the channel at the interface between mitochondria and the
cytosol. Mol Cell Biochem, 2004. 256-257(1-2): p. 107-15.
83. Duchen, M.R., Contributions of mitochondria to animal physiology: from homeostatic
sensor to calcium signalling and cell death. J Physiol, 1999. 516 ( Pt 1): p. 1-17.
84. Oakes, S.A., et al., Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate
receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci U S A,
2005. 102(1): p. 105-10.
85. Li, C., et al., Apoptosis regulation by Bcl-x(L) modulation of mammalian inositol 1,4,5-
trisphosphate receptor channel isoform gating. Proc Natl Acad Sci U S A, 2007. 104(30):
p. 12565-70.
86. Ozoren, N. and W.S. El-Deiry, Defining characteristics of Types I and II apoptotic cells
in response to TRAIL. Neoplasia, 2002. 4(6): p. 551-7.
87. Scaffidi, C., et al., Two CD95 (APO-1/Fas) signaling pathways. EMBO J, 1998. 17(6):
p. 1675-87.
88. Stennicke, H.R. and G.S. Salvesen, Caspases - controlling intracellular signals by
protease zymogen activation. Biochim Biophys Acta, 2000. 1477(1-2): p. 299-306.
89. Tang, D., J.M. Lahti, and V.J. Kidd, Caspase-8 activation and bid cleavage contribute
to MCF7 cellular execution in a caspase-3-dependent manner during staurosporine-
mediated apoptosis. J Biol Chem, 2000. 275(13): p. 9303-7.
90. Cowling, V. and J. Downward, Caspase-6 is the direct activator of caspase-8 in the
cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-
6 prodomain. Cell Death Differ, 2002. 9(10): p. 1046-56.
91. Bennett, M., et al., Cell surface trafficking of Fas: a rapid mechanism of p53-mediated
apoptosis. Science, 1998. 282(5387): p. 290-3.
92. Schinzel, A., T. Kaufmann, and C. Borner, Bcl-2 family members: integrators of survival
and death signals in physiology and pathology [corrected]. Biochim Biophys Acta,
2004. 1644(2-3): p. 95-105.
93. Youle, R.J. and A. Strasser, The BCL-2 protein family: opposing activities that mediate
cell death. Nat Rev Mol Cell Biol, 2008. 9(1): p. 47-59.
94. Karbowski, M., et al., Role of Bax and Bak in mitochondrial morphogenesis. Nature,
2006. 443(7112): p. 658-62.
95. Gavathiotis, E., et al., BH3-triggered structural reorganization drives the activation of
proapoptotic BAX. Mol Cell, 2010. 40(3): p. 481-92.
96. Epand, R.F., et al., Direct evidence for membrane pore formation by the apoptotic
protein Bax. Biochem Biophys Res Commun, 2002. 298(5): p. 744-9.
97. Cleland, M.M., et al., Bcl-2 family interaction with the mitochondrial morphogenesis
machinery. Cell Death Differ, 2011. 18(2): p. 235-47.
98. Bleicken, S., et al., Molecular details of Bax activation, oligomerization, and membrane
insertion. J Biol Chem, 2010. 285(9): p. 6636-47.
99. Newmeyer, D.D. and S. Ferguson-Miller, Mitochondria: releasing power for life and
unleashing the machineries of death. Cell, 2003. 112(4): p. 481-90.
100. Zou, H., et al., Apaf-1, a human protein homologous to C. elegans CED-4, participates
in cytochrome c-dependent activation of caspase-3. Cell, 1997. 90(3): p. 405-13.
101. De Luca, A., et al., The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways:
role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin
Ther Targets, 2012. 16 Suppl 2: p. S17-27.
102. Cossa, G., et al., Modulation of sensitivity to antitumor agents by targeting the MAPK
survival pathway. Curr Pharm Des, 2013. 19(5): p. 883-94.
103. Yang, S.H., A.D. Sharrocks, and A.J. Whitmarsh, MAP kinase signalling cascades and
transcriptional regulation. Gene, 2013. 513(1): p. 1-13.
104. Saccani, S., S. Pantano, and G. Natoli, p38-Dependent marking of inflammatory genes
for increased NF-kappa B recruitment. Nat Immunol, 2002. 3(1): p. 69-75.
105. Junttila, M.R., S.P. Li, and J. Westermarck, Phosphatase-mediated crosstalk between
MAPK signaling pathways in the regulation of cell survival. FASEB J, 2008. 22(4): p.
954-65.
106. Waskiewicz, A.J., et al., Mitogen-activated protein kinases activate the serine/threonine
kinases Mnk1 and Mnk2. EMBO J, 1997. 16(8): p. 1909-20.
107. Arthur, J.S. and S.C. Ley, Mitogen-activated protein kinases in innate immunity. Nat
Rev Immunol, 2013. 13(9): p. 679-92.
108. Cuenda, A. and S. Rousseau, p38 MAP-kinases pathway regulation, function and role
in human diseases. Biochim Biophys Acta, 2007. 1773(8): p. 1358-75.
109. Aggarwal, B.B., Signalling pathways of the TNF superfamily: a double-edged sword.
Nat Rev Immunol, 2003. 3(9): p. 745-56.
110. Bhatelia, K., K. Singh, and R. Singh, TLRs: linking inflammation and breast cancer.
Cell Signal, 2014. 26(11): p. 2350-7.
111. Woo, M., et al., Essential contribution of caspase 3/CPP32 to apoptosis and its
associated nuclear changes. Genes Dev, 1998. 12(6): p. 806-19.
112. Janicke, R.U., et al., Caspase-3 is required for DNA fragmentation and morphological
changes associated with apoptosis. J Biol Chem, 1998. 273(16): p. 9357-60.
113. Chauhan, D., et al., Cytochrome c-dependent and -independent induction of apoptosis
in multiple myeloma cells. J Biol Chem, 1997. 272(48): p. 29995-7.
114. Hakem, R., et al., Differential requirement for caspase 9 in apoptotic pathways in vivo.
Cell, 1998. 94(3): p. 339-52.
115. Phee, H., et al., Pak2 is required for actin cytoskeleton remodeling, TCR signaling, and
normal thymocyte development and maturation. Elife, 2014. 3: p. e02270.
116. Kuzumaki, N., et al., [Tumor suppressive function of gelsolin]. Gan To Kagaku Ryoho,
1997. 24(11): p. 1436-41.
117. Yu, L., et al., Autophagic programmed cell death by selective catalase degradation. Proc
Natl Acad Sci U S A, 2006. 103(13): p. 4952-7.
118. Salo, D.C., et al., Superoxide dismutase is preferentially degraded by a proteolytic
system from red blood cells following oxidative modification by hydrogen peroxide. Free
Radic Biol Med, 1988. 5(5-6): p. 335-9.
校內:2023-07-31公開