簡易檢索 / 詳目顯示

研究生: 張鈞傑
Chang, Chun-Chieh
論文名稱: 小型液冷離心式泵浦之研製
A Design and Fabrication of Compact Water Cooling Centrifugal Pump
指導教授: 周榮華
Zhou, Rong-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 101
中文關鍵詞: 計算流體力學揚程小型離心式泵浦
外文關鍵詞: Compact Centrifugal, Head, CFD
相關次數: 點閱:100下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究之目的在於分析水冷式散熱模組小型離心式泵浦之設計參數對其性能的影響。利用數值方法配合實驗分析,找出高性能之水力與幾何設計。依比速率決定泵浦的設計條件後,根據設計理論估算出葉片與渦形殼的幾何參數,將CAD所建立之模型以CFD套裝軟體FLUENT作數值計算,分析其流場現象與性能曲線。實驗部份,則以模擬最佳之泵浦作為製作實驗模型之依據,利用儀器量測其操作點之轉速、流量及壓力分析其性能曲線,比較模擬結果驗證其正確性。
      CFD模擬結果顯示,以NPSHR估算本文設計泵浦在轉速3000rpm時的操作點並無氣穴問題發生,其最大流量為13.1LPM、最大揚程為1.36m,由流場分析的速度分布與壓力分布可看出並無發生渦漩與流線不順暢之二次流現象。從實驗結果可知在3000rpm轉速下,最大流量為11.3LPM、最大揚程為1.18m,証明CFD在泵浦的模擬分析上有相當之準確性;並且與市售小型水冷泵浦模擬與實驗結果的比較下,本文設計泵浦流量為其流量之2.8倍,揚程為其之0.4倍。

      This research aims to analyze the effects of different design factors on the performance of small size water cooling module centrifugal pump. With CFD simulation and experimental analysis, the optimum hydraulic and geometric designs have been investigated. Under the design conditions defined by specific speed, the geometrical parameters of the blade and volute are worked out on the basis of design theory. The fluid field and performance curve of the numerical model established by CAD are then analyzed according to the calculation made by CFD software FLUENT. The experiment measures the rotational speed, flow rate and pressure of a modeled optimum pump, making an analysis of the performance curve of different parameters, which shows similar results compared with the simulation.
      Based on NPSHR estimate, the result of CFD simulation shows that no cavitation is found inside the pump at the operating point of 3000rpm. The flow rate reaches a maximum of 13.1LPM, and the head 1.36m. According to the velocity distribution, the fluid field shows no secondary flow as in vortex and streamline. The experimental analysis reveals that the pump shows a maximum flow rate of 11.3LPM and a maximum head of 1.18m at the operating point of 3000rpm, which indicates that the application of CFD to the simulation provides an accurate prediction. Compared with commercial pump, the model pump of this research is 2.8 times higher in flow rate and 0.4 times lower in head.

    目 錄 目 錄 I 表 目 錄 IV 圖 目 錄 V 符 號 說 明 IX 第一章、緒論 1 1-1前言 1 1-2液冷式散熱技術之簡介 2 1-3研究動機 5 1-4文獻回顧 6 第二章、離心式泵浦設計理論 13 2-1泵浦設計條件 13 2-2葉片設計理論 15 2-3渦形殼設計理論 20 第三章、數值方法及基本假設 23 3-1基本假設 23 3-2統御方程式 24 3-3數值模型說明 26 3-3-1數值模型建構 26 3-3-2數值網格建立 27 3-3-3旋轉流體數值架構 28 3-3-4邊界條件設定 29 3-4數值方法 31 3-4-1紊流模型 31 3-4-2壁面函數 32 第四章、實驗方法與設備 34 4-1實驗方法 34 4-2實驗模型 35 4-2-1葉輪 35 4-2-2渦型殼 36 4-2-3磁浮軸承馬達 36 4-2-4球閥 37 4-2-5透明膠管 37 4-2-6工作流體 37 4-3實驗儀器 37 4-3-1電源供應器 37 4-3-2轉速監測器 38 4-3-3數位式壓力計 38 4-3-4量筒 38 第五章、結果與討論 39 5-1泵浦數值分析之驗證 39 5-2泵浦設計參數與性能之比較 40 5-3泵浦設計參數與流場特性之比較 43 5-4模擬與實驗之比較 45 第六章、結論與建議 48 6-1結論 48 6-2未來研究建議 49 參 考 文 獻 51

    [1]R. R. Tummala, “Fundamental of Microsystems Packaging,” McGraw-Hill, 2001.
    [2]M. J. Ellsworth, “Chip Power Density and Module Cooling Technology Projections for the Current Decade,” IEEE Inter Society Conference on Thermal Phenomena, vol.2, pp.707-708, 2004.
    [3]K. Azar, “Advanced Cooling Concepts and Their Challenges,” Advanced Thermal Solutions Inc., MA, USA, 2002.
    [4]R. C. Chu, “The Challenges of Electronic Cooling:Past, Current and Future,” Transactions of ASME, Journal of Electronic Packaging, vol.126, pp.491-500, 2004.
    [5]T. Y. T. Lee, J. A. Andrews, P. Chow and D. Saums, “Compact Liquid Cooling System for Small, Moveable Electronic Equipment,” IEEE Transaction on Components, Hybrid, and Manufacturing Technology, vol.15, no.5, pp.786-793, 1992.
    [6]R. D. Dickinson, S. Novotny and M. Vogel, J. Dunn, “A System Design Approach to Liquid-Cooling Microprocessors,” IEEE Inter Society Conference on Thermal Phenomena, pp.413-420, 2002.
    [7]X. Wei and Y. Joshi, “Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components,” Transactions of ASME, Journal of Electronic Packaging, vol.126, pp.60-66, 2004.
    [8]T. E. Salem, D. Porschet and S. B. Bayne, “Thermal Performance of Water-Cooling Heat Sink: A Comparison of Two Different Design,” 21th IEEE SEMI-THERM Symposium, 2005.
    [9]M. Fabbri, S. Jiang and V. K. Dhir, “Comparative Study of Cooling of High Power Density Electronics Using Sprays and Microjets,” Transactions of ASME, Journal of Electronic Packaging, vol.127, pp.38-48, 2005.
    [10]A. B. Cohen, “Thermal Management of Air- and Liquid-Cooled Multichip Modules,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, vol.CHMT-10, no.2, pp.159-175, 1987.
    [11]R. Remsburg, “Advanced Thermal Design of Electronic Equipment,” McGraw-Hill, 2001.
    [12]A. Goto and M. Zangendh, “Hydrodynamic Design of Pump Diffuser Using Inverse Design Method and CFD,” Transactions of ASME, Journal of Fluids Engineering, vol.124, pp.319-328, 2002.
    [13]A. Goto, M. Nohmi, T. Sakurai and Y. Sogawa, “Hydrodynamic Design System for Pumps Based on 3-D CAD, CFD, and Inverse Design Method,” Transactions of ASME, Journal of Fluids Engineering, vol.124, pp.329-335, 2002.
    [14]A. Deguchi, T. Fujita and Y. Nomoto, “Development of Design Method for a High-Efficiency Water Pump,” Society of Automotive Engineers of Japan, vol.21, pp.35-39, 2000.
    [15]G. Ardizzon and G. Pavesi, “Optimum Incidence Angle in Centrifugal Pumps and Radial Inflow Turbines,” Proceedings of the Institution of Mechanical Engineers, vol.212-part A, pp.97-107, 1998.
    [16]J. Gonzalez, J. Fernandez, E. Blanco and C. Santolaria, “Numerical Simulation of the Dynamic Effect Due to Impeller-Volute Interaction in a Centrifugal Pump,” Transactions of ASME, Journal of Fluids Engineering, vol.124, pp.348-355, 2002.
    [17]X. Song, H. G. Wood and D. Olsen, “Computational Fluid Dynamics(CFD)Study if the 4th Generation Prototype of a Continuous Flow Ventricular Assist Device(VAD),” Transactions of ASME, Journal of Biomechanical Engineering, vol.126, pp.180-187, 2004.
    [18]J. Apel, F. Neudel and H. Reul, “Computational Fluid Dynamics and Experimental Validation of a Microaxial Blood Pump,” ASAIO Journal, vol.47, pp.552-558, 2001.
    [19]W. N. Dawes, P. C. Dhanasekaran, W. P. Keller and A. M. Savill, “Reducing Bottlenecks in the CAD-to-Mesh-to-Solution Cycle Time to Allow CFD to Participate in Design,” Transactions of ASME, Journal of Turbomachinery, vol.123, pp.552-557, 2001.
    [20]R. K. Byskov, C. B. Jacobsen and N. Pedersen, “Flow in a Centrifugal Pump Impeller at Design and Off-Design Conditions--Part II: Large Eddy Simulations,” Transactions of ASME, Journal of Fluids Engineering, vol.125, pp.73-83, 2003.
    [21]M. Roth and R. Peikert, “Flow Visualization for Turbomachinery Design,” Visualization '96. Proceedings, pp.381-384, 1996.
    [22]C. P. Hamkins and S. Bross, “Use of Surface Flow Visualization Methods in Centrifugal Pump Design,” Transactions of ASME, Journal of Fluids Engineering, vol.124, pp.314-318, 2002.
    [23]Z. J. Wu, R. K. Gottlieb, G. W. Burgreen, J. A. Holmes, D. C. Borzelleca, M. V. Kameneva, B. P. Griffith and J. F. Antaki, “Investigation of Fluid Dynamics Within a Miniature Mixed Flow Blood Pump,” Experiments in Fluids, vol.31, pp.615-629, 2001.
    [24]S. C. M. Yu, B. T. H. Ng, W. K. Chan and L. P. Chua, “The Flow Patterns Within the Impeller Passages of a Centrifugal Blood Pump Model,” Medical Engineering and Physics, vol.22, pp.381-393, 2000.
    [25]T. Yamane, T. Ikeda, T. Orita and T. Tateishi, “Fluid Dynamics of Turbo Pumps for Artificial Hearts,” Materials Science and Engineering C, vol.4, pp.99-106, 1996.
    [26]S. S. Hong and S. S. Kang, “Flow at the Centrifugal Pump Impeller Exit With Circumferential Distortion of the Outlet Static Pressure,” Transactions of ASME, Journal of Fluids Engineering, vol.124, pp.314-318, 2002.
    [27]A. Hiwata and Y. Tsujimoto, “Theoretical Analysis of Fluid Forces on an Open-Type Centrifugal Impeller in Whirling Motion,” Transactions of ASME, Journal of Fluids Engineering, vol.124, pp.342-347, 2002.
    [28]W. G. Li, “Effects of Viscosity of Fluids on Centrifugal Pump Performance and Flow Pattern in the Impeller,” International Journal of Heat and Fluid Flow, vol.21, pp.207-212, 2000.
    [29]J. F. Gulich, “Effect of Reynolds Number and Surface Roughness on the Efficiency of Centrifugal Pumps,” Transactions of ASME, Journal of Fluids Engineering, vol.125, pp.670-679, 2003.
    [30]J. Friedrichs and G. Kosyna, “Rotating Cavitation in a Centrifugal Pump Impeller of Low Specific Speed,” Transactions of ASME, Journal of Fluids Engineering, vol.124, pp.356-362, 2002.
    [31]J. Asama, T. Shinshi, H. Hoshi, S. Takatani and A. Shimokohbe, “A New Design for a Compact Centrifugal Blood Pump with a Magnetically Levitated Rotor,” ASAIO Journal, vol.50, pp.550-556, 2004.
    [32]L. Nelik, “Centrifugal and Rotary Pumps- Fundamentals with Applications,” CRC Press LLC, 1999.
    [33]A. J. Stepanoff, “Centrifugal and Axial Flow Pumps,” John Wiley&Sons, 1976.
    [34]蘇宗寶,「離心式泵」,徐氏基金會,1986。
    [35]R. K. Turton, “Rotodynamic Pump Design,” Cambridge University Press, 1994.
    [36]K.Schanzlin, A. G. Becker, “Centrifugal Pump Lexicon,” KSB, Aktiengesellschaft, 1980.
    [37]J. Tuzson, “Centrifugal Pump Design,” John Wiley&Sons, 2000.
    [38]B. R. Munson, D. F. Young and T. H. Okiishi, “Fundamentals of Fluid Mechanics,” John Wiley&Sons, 1998.
    [39]“GAMBIT 2.4 Modeling Guide,” Fluent Inc., 2003.
    [40]“Fluent 6.1 Documentation,” Fluent Inc., 2003.
    [41]J. Y. Luo, R. I. Issa and A. D. Gosman, “Prediction of Impeller- Induced Flow in Mixing Vessels Using Multiple Frames of Reference,” IchemE Symposium Series, vol.136, pp.549-556, 1994.
    [42]B. E. Launder and D. B. Spalding, “Lectures in Mathematical Models of Turbulence,” Academic Press, London, England, 1972.
    [43]B. E. Launder and D. B. Spalding, “The Numerical Computation of Turbulent Flow,” Computer Methods in Applied Mechanics and Engineering, vol.3, pp.269-298, 1974.
    [44]http://www.asiateck.com.tw,亞必特股份有限公司。
    [45]http://www.swiftnets.com
    [46]張鈞傑、周榮華、吳村木、陳政男,「離心式不阻塞污水泵浦之性能分析」,中華民國力學學會第二十八屆全國力學會議,2004。

    下載圖示 校內:2006-08-18公開
    校外:2007-08-18公開
    QR CODE