簡易檢索 / 詳目顯示

研究生: 許晋嘉
Hsu, Chin-Chia
論文名稱: 慣性導航核心之自駕車多感測器定位模組:結合全球衛星導航、慣性感測器、單目相機與高精向量地圖
An INS-Centric Multi-Sensor Locator for Autonomous Vehicles Using GNSS, IMU, Monocular Camera, and HD Vector Maps
指導教授: 江凱偉
Chiang, Kai-Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2026
畢業學年度: 114
語文別: 英文
論文頁數: 234
中文關鍵詞: 定位模組多感測器慣性導航全球衛星導航單目相機高精向量地圖
外文關鍵詞: Locator, Multi-sensor, Inertial Navigation System, Global Navigation Satellite System, Monocular Camera, HD Vector Maps
相關次數: 點閱:4下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對自駕車在不同GNSS條件下的定位需求,提出一套以慣性導航系統(INS)為核心的多感測器(Multi-sensor)定位模組(locator),目標為提供車道內等級之穩定且可靠的定位結果。傳統的全球衛星導航系統與慣性導航系統(GNSS/INS)、視覺為主(Vision-based)或光達為主(LiDAR-based)之定位模組,多半僅能在良好環境下達到理想精度,當車輛行經都會巷弄、高架橋下或GNSS遮蔽區時,定位精度往往會急遽下降。為克服此一限制,本研究提出「locator」概念,使整個導航系統表現如同一顆經強化的GNSS模組,輸出高精度且穩定的位置、速度與姿態(PVA)解,而非各感測器觀測量的組合。
    本論文所提出之定位模組稱為PointLoc,採用INS-centric架構的擴增卡曼濾波器(EKF)實現。INS負責核心的狀態預測,而GNSS、單目相機與IMU之視覺慣性里程計(VIO)、以及高精向量地圖(HD Vector Maps)之地圖匹配,則以鬆耦合(LC)模組的形式整合進同一套濾波架構中,並分別具備對應的量測模型與品質檢核機制。當GNSS訊號可用時,可提供具全球基準的絕對位置更新;VIO模組則提供局部連續且一致的速度估計,在GNSS品質下降期間穩定整體解;高精向量地圖模組則利用相機影像與Lanelet2格式之HD Maps進行匹配,並將成功匹配結果轉換為對位置與航向的車道層級約束。透過此模組化設計,PointLoc能在GNSS/INS、GNSS/INS/VIO,以及GNSS/INS/VIO/HD Vector Maps等不同感測器組合下運作,提供上層規劃(Planning)與控制(Control)模組一致的PVA資訊。
    本研究於台中水湳與台南沙崙兩處代表性測試路線上進行實車實驗,路線包含開闊區、GNSS挑戰區以及GNSS遮蔽區,且具部分高精向量地圖覆蓋。實驗結果顯示,在可用地圖輔助之路段,PointLoc的二維與三維位置均方根誤差可維持在分米等級,同時相較於傳統GNSS/INS架構,顯著降低垂直方向誤差與較大尺度的位置誤差,尤其在GNSS品質不佳或完全遮蔽的情境下更為明顯。在缺乏高精向量地圖的區域,PointLoc會修正為GNSS/INS/VIO定位模組,同時持續提供穩定且連續的導航解。綜合上述結果,本論文證實以INS為核心,結合GNSS、IMU、單目相機與高精向量地圖之模組化整合策略,可實現車道等級之定位精度。

    This thesis investigates an INS-centric multi-sensor locator for autonomous vehicles that aims to provide reliable lane-level localization under varying GNSS conditions. Conventional GNSS/INS, vision-based, or LiDAR-based solutions typically achieve good accuracy only in favorable environments and can degrade sharply in urban canyons, under elevated structures, or during GNSS outages. To address this limitation, the thesis introduces the concept of a locator that appears to the vehicle as a strengthened GNSS module, delivering a single consistent position, velocity, and attitude solution instead of separate sensor outputs.
    The proposed locator, named PointLoc, is implemented as an INS-centric error state extended Kalman filter (EKF). The INS provides the core state propagation, while GNSS, visual-inertial odometry (VIO) from a monocular camera and IMU, and HD Vector Map matching are incorporated as loosely coupled (LC) aiding modules with dedicated measurement models and quality checks. GNSS supplies globally referenced position when signals are available. The VIO module contributes locally consistent velocity estimates that stabilize the solution during periods of degraded GNSS. The HD Vector Map module performs camera to map matching against lane-level features represented in HD Maps in Lanelet2 format and converts successful matches into position and heading constraints. This modular structure allows PointLoc to operate with different combinations of sensors, including GNSS/INS, GNSS/INS with VIO, and GNSS/INS with VIO and HD Vector Maps, while always providing a unified PVA interface to the planning and control stack.
    PointLoc is evaluated using real vehicle experiments on two representative routes in Taichung Shuinan and Tainan Shalun that contain a mix of open sky, GNSS challenging, and GNSS denied segments with partial HD Map coverage. The results show that PointLoc achieves decimeter level 2D and 3D root mean square position errors and reduces vertical error and large error outliers compared with conventional GNSS/INS configurations, particularly in segments with degraded or absent GNSS and available HD Vector Maps. In regions without HD Maps, PointLoc naturally converges toward the GNSS/INS/VIO performance while maintaining a stable navigation output. These findings demonstrate that an INS-centric, modular integration of GNSS, IMU, monocular camera, and HD Vector Maps is a practical and effective strategy for realizing a robust multi-sensor locator suitable for lane-level autonomous driving applications.

    中文摘要 I Abstract III Acknowledgements V Content VI List of Tables XIII List of Figures XVI Chapter 1 Introduction 1 1.1 Background and Literature Review 1 1.2 Motivation, Objective and Contribution 7 1.3 Thesis Outline 9 Chapter 2 Fundamental of Navigation System 12 2.1 Autonomous Vehicle System 12 2.1.1 Autonomous Vehicle Architecture 12 2.1.1.1 Perception Module 13 2.1.1.2 Localization Module 16 2.1.1.3 Planning Module 18 2.1.1.4 Control Module 19 2.1.2 Autoware 21 2.2 Global Navigation Satellite System 23 2.2.1 Overview of GNSS Positioning 23 2.2.2 GNSS Observation Equations 25 2.2.2.1 Pseudorange Measurement 25 2.2.2.2 Carrier Phase Measurement 26 2.2.2.3 Doppler Shift Measurement 27 2.2.3 GNSS Error Source and Performance 28 2.2.3.1 Satellite Orbit Error 28 2.2.3.2 Satellite Clock Bias 29 2.2.3.3 Receiver Clock Bias 30 2.2.3.4 Ionospheric Delay 30 2.2.3.5 Tropospheric Delay 31 2.2.3.6 Multipath Effect and Non-Line of Sight Effect 32 2.2.3.7 Dilution of Precision and User Equivalent Range Error 33 2.2.4 GNSS Positioning Modes 35 2.2.4.1 Standard Point Positioning 36 2.2.4.2 Differential Global Positioning System 37 2.2.4.3 Precise Point Positioning 39 2.2.4.4 Real-Time Kinematic 40 2.3 Inertial Navigation System 41 2.3.1 Definition of Reference Frame 41 2.3.1.1 Inertial Frame 42 2.3.1.2 Earth-Centered, Earth-Fixed Frame 43 2.3.1.3 Navigation Frame 47 2.3.1.4 Body Frame 48 2.3.1.5 Vehicle Frame 49 2.3.1.6 Camera Frame 50 2.3.2 Inertial Sensor Error Source 51 2.3.2.1 Bias Offset and Bias Instability 52 2.3.2.2 Scale Factor Error 53 2.3.2.3 Non-Orthogonality Error 54 2.3.2.4 Misalignment Error 55 2.3.2.5 Random Walk 56 2.3.3 Inertial Sensor Calibration 57 2.3.3.1 Inertial Sensor Measurement Model 57 2.3.3.2 Six-Position Static Test 58 2.3.3.3 Angle Rate Test 59 2.3.3.4 Allan Variance Test 60 2.3.4 Initial Alignment 61 2.3.4.1 Position Initialization 61 2.3.4.2 Velocity Initialization 61 2.3.4.3 Attitude Initialization 62 2.3.5 INS Mechanization 64 Chapter 3 Multi-Sensor Integration Scheme 67 3.1 Kalman Filter in Navigation System 67 3.1.1 Kalman Filter Formulations 68 3.1.1.1 Continuous-Time Formulation 68 3.1.1.2 Discrete-Time Formulation 69 3.1.2 Kalman Filter Variants 69 3.1.2.1 Linear Kalman Filter 70 3.1.2.2 Extended Kalman Filter 70 3.1.3 Kalman Filter Algorithm 71 3.1.3.1 General Procedure 72 3.1.3.2 Prediction Step 73 3.1.3.3 Update Step 74 3.2 Loosely Coupled Scheme 75 3.2.1 Loosely Coupled Error State 76 3.2.2 Loosely Coupled Measurement Model 76 3.3 Tightly Coupled Scheme 77 3.3.1 Tightly Coupled Error State 78 3.3.2 Tightly Coupled Measurement Model 79 3.4 Vehicle Motion Constrains 80 3.4.1 Zero Velocity Update 81 3.4.2 Zero Integrated Heading Rate 82 3.4.3 Non-Holonomic Constrain 83 Chapter 4 Visual-Inertial Odometry 84 4.1 Overview of Visual-Inertial Odometry 84 4.2 Visual Sensor Calibration 85 4.2.1 Camera Intrinsic Parameters 86 4.2.2 Camera-IMU Extrinsic Parameters 87 4.3 Feature Extraction and Tracking 88 4.4 IMU Pre-Integration 90 4.5 Other Visual Localization Approaches 91 4.5.1 Visual Odometry 92 4.5.2 Visual Simultaneous Localization and Mapping 93 4.5.3 Visual-Inertial Odometry 95 Chapter 5 HD Vector Maps Aided Navigation 97 5.1 Overview of HD Maps 97 5.1.1 Point Cloud Maps 98 5.1.2 Vector Maps 99 5.2 YabLoc Framework 100 5.2.1 Image Process Module 101 5.2.1.1 Line Segment Detection 101 5.2.1.2 Graph Construction 103 5.2.1.3 Segment Filter 105 5.2.2 Map Process Module 107 5.2.2.1 Ground Server 107 5.2.2.2 Lanelet2 Decomposition 108 5.2.3 Particle Filter Localization 110 5.2.3.1 General Procedure 110 5.2.3.2 Prediction Step 111 5.2.3.3 Update and Resampling Step 113 5.3 Other Map Matching Approaches 114 5.3.1 Kalman-Based Map Matching 115 5.3.2 Optimization-Based Map Matching 116 5.3.3 Multi-Hypothesis Map Matching 117 Chapter 6 Proposed Methodology 119 6.1 Proposed Hardware System 119 6.1.1 Time Synchronization 119 6.1.2 Hardware Communication 121 6.2 INS/GNSS/Camera/HD Vector Maps LC Scheme 122 6.2.1 Visual-Inertial Odometry Module 125 6.2.2 HD Vector Maps Matching Module 127 6.2.3 Extended Kalman Filter Update 129 6.2.3.1 Coordinate Update 129 6.2.3.2 Velocity Update 131 6.2.3.3 Heading Update 132 Chapter 7 Experiment and Data Acquisitions 134 7.1 Experimental Setup 134 7.1.1 Reference System 135 7.1.2 Testing System 136 7.1.3 Benchmark System 137 7.2 Scenario Description 138 7.2.1 Taichung Shuinan 138 7.2.2 Tainan Shalun 142 Chapter 8 Results and Discussions 148 8.1 Taichung Shuinan 148 8.1.1 Overall Performance 148 8.1.2 Open Sky Area 152 8.1.3 GNSS Challenging Area 157 8.1.4 GNSS Denied Area 162 8.1.5 Lanelet2 Coverage Area 166 8.1.6 Summary of Taichung Shuinan Scenario 172 8.2 Tainan Shalun 173 8.2.1 Overall Performance 174 8.2.2 Open Sky Area 178 8.2.3 GNSS Challenging Area 181 8.2.4 GNSS Denied Area 185 8.2.5 Lanelet2 Coverage 189 8.2.6 Summary of Tainan Shalun Scenario 194 Chapter 9 Conclusion and Future Work 197 9.1 Conclusion 197 9.2 Future Work 199 Reference 200

    Aceinna. (n.d.). aceinna_openrtk_ros_driver: ROS driver for Aceinna OpenRTK products. Retrieved November 21, 2025, from https://github.com/Aceinna/aceinna_openrtk_ros_driver
    Aceinna OpenRTK Developer Manual documentation. (n.d.). The OpenRTK330LI EVK. Retrieved November 25, 2025, from https://openrtk.readthedocs.io/en/latest/EVK-OpenRTK330LI.html
    AEROSPACE. (2023, December 14). Brief History of GPS | The Aerospace Corporation. https://aerospace.org/article/brief-history-gps
    AJ Cortese. (2024, December 30). Autonomous Driving: The Anatomy of Autonomy (Part II) - MacroPolo. https://archivemacropolo.org/analysis/autonomous-driving-the-anatomy-of-autonomy-part-ii/?rp=m
    Alkan, R. M., Erol, S., İlçi, V., & Ozulu, M. (2020). Comparative analysis of real-time kinematic and PPP techniques in dynamic environment. Measurement, 163, 107995. https://doi.org/10.1016/J.MEASUREMENT.2020.107995
    Antonio Angrisano. (2010). GNSS/INS Integration Methods.
    Asrat, K. T., Cho, H.-J., Asrat, K. T., & Cho, H.-J. (2024). A Comprehensive Survey on High-Definition Map Generation and Maintenance. ISPRS International Journal of Geo-Information 2024, Vol. 13, 13(7). https://doi.org/10.3390/IJGI13070232
    Azam, S., Munir, F., Sheri, A. M., Kim, J., & Jeon, M. (2020). System, Design and Experimental Validation of Autonomous Vehicle in an Unconstrained Environment. Sensors 2020, Vol. 20, Page 5999, 20(21), 5999. https://doi.org/10.3390/S20215999
    Bao, Z., Hossain, S., Lang, H., & Lin, X. (2023). A review of high-definition map creation methods for autonomous driving. Engineering Applications of Artificial Intelligence, 122, 106125. https://doi.org/10.1016/J.ENGAPPAI.2023.106125
    Basler. (n.d.). pylon-ros-camera: The official pylon ROS driver for Basler GigE Vision and USB3 Vision cameras: Retrieved November 21, 2025, from https://github.com/basler/pylon-ros-camera
    Basler Product Documentation. (n.d.). acA1300-75gc. Retrieved November 25, 2025, from https://docs.baslerweb.com/aca1300-75gc
    Blesing, C., Finke, J., Hoose, S., Schweigert, A., & Stenzel, J. (2023). Accuracy evaluation of a Low-Cost Differential Global Positioning System for mobile robotics. Proceedings of IEEE Sensors. https://doi.org/10.1109/SENSORS56945.2023.10324934
    Boguspayev, N., Akhmedov, D., Raskaliyev, A., Kim, A., & Sukhenko, A. (2023). A Comprehensive Review of GNSS/INS Integration Techniques for Land and Air Vehicle Applications. Applied Sciences 2023, Vol. 13, Page 4819, 13(8), 4819. https://doi.org/10.3390/APP13084819
    Bulbul, S., Bilgen, B., & Inal, C. (2021). The performance assessment of Precise Point Positioning (PPP) under various observation conditions. Measurement, 171, 108780. https://doi.org/10.1016/J.MEASUREMENT.2020.108780
    Cánepa, V., Servidia, P., Cánepa, V., & Servidia, P. (2023). Design and evaluation of INS/GNSS loose and tight coupling applied to launch vehicle integrated navigation. Metascience in Aerospace 2024 1:66, 1(1), 66–109. https://doi.org/10.3934/MINA.2024004
    Chih-Yun Hsieh, Kai-Wei Chiang, Meng-Lun Tsai, Chin Sung Yang, Sean Lin, Yi Feng Chang, Jyh Ching Juang, Chi Kuei Wang, Ching Fu Lin, Hatem Darweesh, & Pei Ling Li. (2025). The development and application of Taiwan HD Maps for smart mobile mapping technology. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLVIII-G-2025(G-2025), 625–631. https://doi.org/10.5194/ISPRS-ARCHIVES-XLVIII-G-2025-625-2025
    Choi, C. L., Xu, B., & Leutenegger, S. (2023). Accurate and Interactive Visual-Inertial Sensor Calibration with Next-Best-View and Next-Best-Trajectory Suggestion. IEEE International Conference on Intelligent Robots and Systems, 1759–1766. https://doi.org/10.1109/IROS55552.2023.10341815
    Christian Forster, Luca Carlone, Frank Dellaert, & Davide Scaramuzza. (2015). IMU Preintegration on Manifold for Efficient Visual-Inertial Maximum-a-Posteriori Estimation. https://www.researchgate.net/publication/290180954_IMU_Preintegration_on_Manifold_for_Efficient_Visual-Inertial_Maximum-a-Posteriori_Estimation
    Christian Forster, Luca Carlone, Frank Dellaert, & Davide Scaramuzza. (2017). On-Manifold Preintegration for Real-Time Visual-Inertial Odometry. IEEE Transactions on Robotics, 33(1), 1–21. https://doi.org/10.1109/TRO.2016.2597321
    Dauptain, X., Koné, A., Grolleau, D., Cerezo, V., Gennesseaux, M., & Do, M. T. (2022). Conception of a High-Level Perception and Localization System for Autonomous Driving. Sensors 2022, Vol. 22, Page 9661, 22(24), 9661. https://doi.org/10.3390/S22249661
    David Nistér. (2004). An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6), 756–770. https://doi.org/10.1109/TPAMI.2004.17
    de Miguel, M. Á., García, F., & Armingol, J. M. (2020). Improved LiDAR Probabilistic Localization for Autonomous Vehicles Using GNSS. Sensors 2020, Vol. 20, Page 3145, 20(11), 3145. https://doi.org/10.3390/S20113145
    Devon Morris. (2023, December 19). IMU Fundamentals, Part 4: Allan Deviation and IMU Error Modeling - Tangram Visions Blog. https://www.tangramvision.com/blog/the-allan-deviation-and-imu-error-modeling-part-4-of-5
    DiSalle, R. (2002). Space and Time: Inertial Frames.
    Eljubrani, A., Maklouf, O., & Mgig, A. A. (2023). MEMS Inertial Measurement Unit Calibration Using Low Cost Hardware. 315–319. https://doi.org/10.1109/STA56120.2022.10019246
    Elliott Kaplan, & Christopher Hegarty. (2006). Understanding GPS Principles and Applications Second Edition.
    ETHZ ASL. (2014, June 18). kalibr: The Kalibr visual-inertial calibration toolbox. https://github.com/ethz-asl/kalibr
    Falco, G., Pini, M., & Marucco, G. (2017). Loose and Tight GNSS/INS Integrations: Comparison of Performance Assessed in Real Urban Scenarios. Sensors 2017, Vol. 17, Page 255, 17(2), 255. https://doi.org/10.3390/S17020255
    Farrell, J. A. (2008). Aided Navigation: GPS with High Rate Sensors. www.mhprofessional.com.
    Farrell, J., Grewal, M., Djodat, M., & Barth, M. (1996). Differential GPS with latency compensation for autonomous navigation. IEEE International Symposium on Intelligent Control - Proceedings, 20–25. https://doi.org/10.1109/ISIC.1996.556171
    Frank Dellaert, Dieter Fox, Wolfram Burgard, & Sebastian Thrun. (1999). Monte Carlo localization for mobile robots. Proceedings - IEEE International Conference on Robotics and Automation, 2, 1322–1328. https://doi.org/10.1109/ROBOT.1999.772544
    Gallon, E., Joerger, M., & Pervan, B. (2022). Robust Modeling of GNSS Orbit and Clock Error Dynamics. NAVIGATION: Journal of the Institute of Navigation, 69(4). https://doi.org/10.33012/NAVI.539
    Grompone Von Gioi, R., Jakubowicz, J., Morel, J. M., & Randall, G. (2010). LSD: A fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4), 722–732. https://doi.org/10.1109/TPAMI.2008.300
    Günter Seeber. (2003). Satellite Geodesy.
    Guo, H., Liu, X., Jin, X., Wang, G., Jiang, Y., & Guo, J. (2023). GNSS standard point positioning method based on spherical harmonic expansion of signal propagation path relating errors. Advances in Space Research, 72(4), 1153–1171. https://doi.org/10.1016/J.ASR.2023.04.003
    HEXAGON | NovAtel. (n.d.). PwrPak7D-E2. Retrieved August 20, 2025, from https://novatel.com/products/gnss-inertial-navigation-systems/combined-systems/pwrpak7d-e2
    Huang, Y.-E. (2024). Towards Robust and Universal Real-Time Navigation for Autonomous Vehicles: Development of a Resilient Hybrid Navigation System for Autoware Platforms. https://hdl.handle.net/11296/ft7fbh
    Hugh Durrant-Whyte, & Tim Bailey. (2006). Simultaneous localization and mapping: Part I. IEEE Robotics and Automation Magazine, 13(2), 99–108. https://doi.org/10.1109/MRA.2006.1638022
    Ian Beavers. (2017, June). Orthogonal Perspectives. https://www.analog.com/en/resources/analog-dialogue/raqs/raq-issue-142.html
    IEEE. (1997). IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. https://doi.org/10.1109/IEEESTD.1998.86153
    iMAR. (n.d.). iNAV-RQH: Inertial Gyro Navigation System. Retrieved November 25, 2025, from https://www.imar-navigation.de/de/produkte-uebersicht/product-overview-by-product/item/inav-rqh-inertial-laser-gyro-navigation-system?gad_source=1&gad_campaignid=1596527738&gbraid=0AAAAAD_jgohJI2cq_I6a_UIwYej4RUry9&gclid=Cj0KCQiAoZDJBhC0ARIsAERP-F_u6LnKDpuG7a2NQFCQbzyEDsVctYOoodAAwRCupytUjzkaomrJzuMaAvV-EALw_wcB
    Jain, H., & Babel, P. (2024). A Comprehensive Survey of PID and Pure Pursuit Control Algorithms for Autonomous Vehicle Navigation. https://arxiv.org/pdf/2409.09848
    Jan van Sickle. (2015, April 15). Earth-Centered, Earth-Fixed | Geo Week News. https://www.geoweeknews.com/blogs/vol13no15-earth-centered-earth-fixed
    Jen, Y.-H. (2025). The Development of Redundant IMU/GNSS Integrated Navigation System Using a Federated Filter with Different Fusion Strategies for Land Vehicular Navigation Application.
    Jeong, J., Yoon, J. Y., Lee, H., Darweesh, H., Sung, W., Jeong, J., Yoon, J. Y., Lee, H., Darweesh, H., & Sung, W. (2022). Tutorial on High-Definition Map Generation for Automated Driving in Urban Environments. Sensors 2022, Vol. 22, 22(18). https://doi.org/10.3390/S22187056
    Jianbo Shi, & Carlo Tomasi. (1993). Good Features to Track Introduction.
    Jung, H.-Y., Paek, D.-H., & Kong, S.-H. (2025). Open-Source Autonomous Driving Software Platforms: Comparison of Autoware and Apollo. https://arxiv.org/pdf/2501.18942
    Kai-Wei Chiang, Chi-Kuei Wang, Jung-Hong Hong, Pei-Ling Li, Chin-Sung Yang, Meng-Lun Tsai, Jeffrey Lee, & Sean Lin. (2022). Verification and validation procedure for high-definition maps in Taiwan. Urban Informatics 2022 1:1, 1(1), 1–13. https://doi.org/10.1007/S44212-022-00014-0
    Kai-Wei Chiang, Surachet Srinara, Syun Tsai, Cheng-Xian Lin, & Meng-Lun Tsai. (2023). High-Definition-Map-Based LiDAR Localization Through Dynamic Time-Synchronized Normal Distribution Transform Scan Matching. IEEE Transactions on Vehicular Technology, 72(6), 7011–7023. https://doi.org/10.1109/TVT.2023.3237275
    Kai-Wei Chiang, Surachet Srinara, Yu-Ting Chiu, Syun Tsai, Meng-Lun Tsai, Chalermchon Satirapod, Naser El-Sheimy, & Mengchi Ai. (2024). Creation and Verification of High-Definition Point Cloud Maps for Autonomous Vehicle Navigation. IEEE Internet of Things Journal, 11(23), 37582–37598. https://doi.org/10.1109/JIOT.2024.3435344
    Kang, J. M., Yoon, T. S., Kim, E., Park, J. B., Kang, J. M., Yoon, T. S., Kim, E., & Park, J. B. (2020). Lane-Level Map-Matching Method for Vehicle Localization Using GPS and Camera on a High-Definition Map. Sensors 2020, Vol. 20, 20(8). https://doi.org/10.3390/S20082166
    Karaim, M., Elsheikh, M., Noureldin, A., Karaim, M., Elsheikh, M., & Noureldin, A. (2018). GNSS Error Sources. In Multifunctional Operation and Application of GPS. IntechOpen. https://doi.org/10.5772/INTECHOPEN.75493
    Kuutti, S., Bowden, R., Jin, Y., Barber, P., & Fallah, S. (2021). A Survey of Deep Learning Applications to Autonomous Vehicle Control. IEEE Transactions on Intelligent Transportation Systems, 22(2), 712–733. https://doi.org/10.1109/TITS.2019.2962338
    Li, F., Psimoulis, P., Li, Q., Yang, J., Gao, J., Kou, X., Niu, L., & Meng, X. (2024). Assessment Accuracy of Standard Point Positioning Enhanced by Observation and Position Domain Filtering Utilizing a Multi-Epoch Least-Squares Integration Method. Remote Sensing 2024, Vol. 16, Page 517, 16(3), 517. https://doi.org/10.3390/RS16030517
    Li, J., Wan, Q., Ma, G., Zhang, J., Wang, X., & Fan, J. (2017). Evaluation of the Klobuchar model in TaiWan. Advances in Space Research, 60(6), 1210–1219. https://doi.org/10.1016/J.ASR.2017.05.045
    Mark G. Petovello. (2003). Real-Time Integration of a Tactical-Grade IMU and GPS for High-Accuracy Positioning and Navigation.
    Mark Looney. (2015, June). The Basics of MEMS IMU/Gyroscope Alignment. https://www.analog.com/en/resources/analog-dialogue/articles/mems-imu-gyroscope-alignment.html
    Matos, F., Bernardino, J., Durães, J., Cunha, J., Matos, F., Bernardino, J., Durães, J., & Cunha, J. (2024). A Survey on Sensor Failures in Autonomous Vehicles: Challenges and Solutions. Sensors 2024, Vol. 24, 24(16). https://doi.org/10.3390/S24165108
    McGraw, G. A., Groves, P. D., & Ashman, B. W. (2020). Robust Positioning in the Presence of Multipath and NLOS GNSS Signals. Position, Navigation, and Timing Technologies in the 21st Century, 551–589. https://doi.org/10.1002/9781119458449.CH22
    Movella. (2022, February 1). Understanding Sensor Bias (offset). https://base.movella.com/s/article/Understanding-Sensor-Bias-offset?language=en_US
    Naoki Akai, Luis Yoichi Morales, Eijiro Takeuchi, Yuki Yoshihara, & Yoshiki Ninomiya. (2017). Robust localization using 3D NDT scan matching with experimentally determined uncertainty and road marker matching. IEEE Intelligent Vehicles Symposium, Proceedings, 1356–1363. https://doi.org/10.1109/IVS.2017.7995900
    Nawaf Hazim Barnouti, Mohanad Hazim Nsaif Al-Mayyahi, & Sinan Sameer Mahmood Al-Dabbagh. (2018). Real-Time Face Tracking and Recognition System Using Kanade-Lucas-Tomasi and Two-Dimensional Principal Component Analysis. ICOASE 2018 - International Conference on Advanced Science and Engineering, 24–29. https://doi.org/10.1109/ICOASE.2018.8548818
    Nisha Gandhi. (2018, July 24). Harris Corner Detection and Shi-Tomasi Corner Detection | by Nisha Gandhi | Pixel-wise | Medium. https://medium.com/pixel-wise/detect-those-corners-aba0f034078b
    Noureldin, A., Karamat, T. B., & Georgy, J. (2013). Fundamentals of inertial navigation, satellite-based positioning and their integration. In Fundamentals of Inertial Navigation, Satellite-Based Positioning and their Integration. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30466-8/COVER
    Osen, K. (2019). Accurate Conversion of Earth-Fixed Earth-Centered Coordinates to Geodetic Coordinates. https://hal.science/hal-01704943v2
    Patil, A. K., Punugupati, B., Gupta, H., Mayur, N. S., Ramesh, S., & Honnavalli, P. B. (2025). Building the Future of Transportation: A Comprehensive Survey on AV Perception, Localization, and Mapping. Sensors 2025, Vol. 25, Page 2004, 25(7), 2004. https://doi.org/10.3390/S25072004
    Paul Groves. (2013). Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems, Second Edition.
    Pedro F. Felzenszwalb, & Daniel P. Huttenlocher. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181. https://doi.org/10.1023/B:VISI.0000022288.19776.77/METRICS
    Peter J.G. Teunissen, & Oliver Montenbruck. (2017). Springer Handbook of Global Navigation Satellite Systems.
    Poggenhans, F., Pauls, J. H., Janosovits, J., Orf, S., Naumann, M., Kuhnt, F., & Mayr, M. (2018). Lanelet2: A high-definition map framework for the future of automated driving. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, 2018-November, 1672–1679. https://doi.org/10.1109/ITSC.2018.8569929
    Pratap Misra, & Per Enge. (2006). Global Positioning System: Signal, Measurement, and Performance.
    Qin, T., Li, P., & Shen, S. (2018). VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Transactions on Robotics, 34(4), 1004–1020. https://doi.org/10.1109/TRO.2018.2853729
    Rogers, R. M. (1997). IMU IN-MOTION ALIGNMENT WITHOUT BENEFIT OF ATTITUDE INITIALIZATION. NAVIGATION: Journal of the Institute of Navigation, 44(3), 301–312. http://www.ion.org/publications/abstract.cfm?jp=j&articleID=100028
    ROS 2 Documentation. (n.d.). Humble documentation. Retrieved November 21, 2025, from https://docs.ros.org/en/humble/index.html
    ROS Wiki. (n.d.). novatel_oem7_driver/binary_installation. Retrieved November 21, 2025, from https://wiki.ros.org/novatel_oem7_driver/binary_installation
    Saastamoinen, J. (2013). Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites. American Geophysical Union (AGU). https://doi.org/10.1029/GM015P0247
    SAE. (2021, May 3). SAE Levels of Driving AutomationTM Refined for Clarity and International Audience. https://www.sae.org/blog/sae-j3016-update
    Sanz Subirana, Jaime., Hernandez-Pajares, Manuel., & Juan Zornoza, J. Miguel. (2013). GNSS DATA PROCESSING Volume I: Fundamentals and Algorithms. European Space Agency. https://gssc.esa.int/navipedia/GNSS_Book/ESA_GNSS-Book_TM-23_Vol_I.pdf
    Scaramuzza, D., & Fraundorfer, F. (2011). Tutorial: Visual odometry. IEEE Robotics and Automation Magazine, 18(4), 80–92. https://doi.org/10.1109/MRA.2011.943233
    Scott Stephenson, Xiaolin Meng, Terry Moore, Anthony Baxendale, & Tim Edwards. (2011, November). Accuracy Requirements and Benchmarking Position Solutions for Intelligent Transportation Location Based Services. https://www.researchgate.net/publication/260000200_Accuracy_Requirements_and_Benchmarking_Position_Solutions_for_Intelligent_Transportation_Location_Based_Services
    Shin, E.-H. (2005). Estimation techniques for low-cost inertial navigation. https://doi.org/10.11575/PRISM/2386
    Soares, J., Haunschild, R., Di Nunzio, G. M., Quaresma, P., Laura, L., Paprzycki, M., & Aliane, N. (2025). A Survey of Open-Source Autonomous Driving Systems and Their Impact on Research. Information 2025, Vol. 16, Page 317, 16(4), 317. https://doi.org/10.3390/INFO16040317
    Sormoli, Mr. A., Koufos, K., Dianati, M., & Woodman, R. (2024). A Survey on Hybrid Motion Planning Methods for Automated Driving Systems. https://arxiv.org/pdf/2406.05575v1
    Srinara, S., Lee, C. M., Tsai, S., Tsai, G. J., & Chiang, K. W. (2021). Performance Analysis of 3D NDT Scan Matching for Autonomous Vehicles Using INS/GNSS/3D LiDAR-SLAM Integration Scheme. INERTIAL 2021 - 8th IEEE International Symposium on Inertial Sensors and Systems, Proceedings. https://doi.org/10.1109/INERTIAL51137.2021.9430476
    Srinara, S., Tsai, S., Lin, C. X., Tsai, M. L., & Chiang, K. W. (2022). Reliable Evaluation of Navigation States Estimation for Automated Driving Systems. IEEE Intelligent Vehicles Symposium, Proceedings, 2022-June, 1765–1773. https://doi.org/10.1109/IV51971.2022.9827391
    Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, & Paul Furgale. (2015). Keyframe-based visual-inertial odometry using nonlinear optimization. International Journal of Robotics Research, 34(3), 314–334. https://doi.org/10.1177/0278364914554813;PAGE:STRING:ARTICLE/CHAPTER
    Suresh, R. P., Sridhar, V., Pramod, J., & Talasila, V. (2018). Zero Velocity Potential Update (ZUPT) as a Correction Technique. Proceedings - 2018 3rd International Conference On Internet of Things: Smart Innovation and Usages, IoT-SIU 2018. https://doi.org/10.1109/IOT-SIU.2018.8519902
    Tamas Foldi. (2023, November 3). Offline Camera Calibration in ROS 2. https://medium.com/starschema-blog/offline-camera-calibration-in-ros-2-45e81df12555
    The Autoware Foundation. (2022, June 2). Architecture overview - Autoware Documentation. https://github.com/autowarefoundation/autoware-documentation/blob/main/docs/design/autoware-architecture-v1/image/autoware-architecture-overview.drawio.svg
    The official Waymo blog. (2024, August 19). Meet the 6th-generation Waymo Driver: Optimized for costs, designed to handle more weather, and coming to riders faster than before. https://waymo.com/blog/2024/08/meet-the-6th-generation-waymo-driver
    Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistics Robotics. In Sustainability (Switzerland) (Vol. 11, Issue 1). The MIT Press Cambridge, Massachusetts. http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_SISTEM_PEMBETUNGAN_TERPUSAT_STRATEGI_MELESTARI
    TIER IV. (2023, June 27). tier4/YabLoc. https://github.com/tier4/YabLoc
    Tim Bailey, & Hugh Durrant-Whyte. (2006). Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics and Automation Magazine, 13(3), 108–117. https://doi.org/10.1109/MRA.2006.1678144
    Titterton, D., & Weston, J. (2004). Strapdown Inertial Navigation Technology. In Strapdown Inertial Navigation Technology. Institution of Engineering and Technology. https://doi.org/10.1049/PBRA017E
    Turan, B. (2017). TERRAIN REFERENCED NAVIGATION OF AN AIRCRAFT USING PARTICLE FILTER.
    u-blox. (2025, March 12). Real-Time Kinematic (RTK) and GNSS corrections. https://www.u-blox.com/en/technologies/rtk-real-time-kinematic
    Ünsal, D. (2012). ESTIMATION OF DETERMINISTIC AND STOCHASTIC IMU ERROR PARAMETERS.
    Van Mastrigt, L. A., Van Der Wal, A. J., & Oonincx, P. J. (2015). Exploiting the Doppler effect in GPS to monitor signal integrity and to detect spoofing. 2015 International Association of Institutes of Navigation World Congress, IAIN 2015 - Proceedings. https://doi.org/10.1109/IAIN.2015.7352259
    VectorNav Technologies LLC. (n.d.). IMU Specifications. Retrieved August 31, 2025, from https://www.vectornav.com/resources/inertial-navigation-primer/specifications--and--error-budgets/specs-imuspecs
    Wang, D., Dong, Y., Li, Z., Li, Q., & Wu, J. (2020). Constrained MEMS-Based GNSS/INS Tightly Coupled System with Robust Kalman Filter for Accurate Land Vehicular Navigation. IEEE Transactions on Instrumentation and Measurement, 69(7), 5138–5148. https://doi.org/10.1109/TIM.2019.2955798
    Wei, X., Zhang, Y., Fan, S., Gao, W., Shen, F., Ming, X., & Wang, Y. (2025). Low Cost IMU Attitude Estimation Algorithm Based on Measurement Adaptive Reduced DCM. IEEE Sensors Journal, 25(1), 1428–1439. https://doi.org/10.1109/JSEN.2024.3495996
    Wu, F., Luo, H., Jia, H., Zhao, F., Xiao, Y., & Gao, X. (2021). Predicting the Noise Covariance with a Multitask Learning Model for Kalman Filter-Based GNSS/INS Integrated Navigation. IEEE Transactions on Instrumentation and Measurement, 70. https://doi.org/10.1109/TIM.2020.3024357
    Xiao, Z., Yang, D., Wen, T., Jiang, K., Yan, R., Xiao, Z., Yang, D., Wen, T., Jiang, K., & Yan, R. (2020). Monocular Localization with Vector HD Map (MLVHM): A Low-Cost Method for Commercial IVs. Sensors 2020, Vol. 20, 20(7). https://doi.org/10.3390/S20071870
    Xu, C., Zhu, Y., Xu, X., Kong, J., Yao, Y., Shi, J., & Li, X. (2023). Regional Tropospheric Correction Model from GNSS–Saastamoinen–GPT2w Data for Zhejiang Province. Atmosphere 2023, Vol. 14, Page 815, 14(5), 815. https://doi.org/10.3390/ATMOS14050815
    Xu, R., Ding, M., Qi, Y., Yue, S., & Liu, J. (2018). Performance Analysis of GNSS/INS Loosely Coupled Integration Systems under Spoofing Attacks. Sensors 2018, Vol. 18, Page 4108, 18(12), 4108. https://doi.org/10.3390/S18124108
    Yang En Lu, Kai Wei Chiang, Meng Lun Tsai, Yu Ting Chiu, Surachet Srinara, Ting Chun Wu, & N. El-Sheimy. (2023). An Evaluation of Solid-State LiDAR for Localization and HD point cloud mapping. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 48(1/W2-2023), 841–847. https://doi.org/10.5194/ISPRS-ARCHIVES-XLVIII-1-W2-2023-841-2023
    Yongjun Zhang, & Xiang Shen. (2013). Direct georeferencing of airborne LiDAR data in national coordinates. ISPRS Journal of Photogrammetry and Remote Sensing, 84, 43–51. https://doi.org/10.1016/J.ISPRSJPRS.2013.07.003
    Yueqi Wang, Tangyou Liu, Licheng Feng, Jinze Wang, Yang Yang, Jianjun Bao, Binghao Li, & Liao Wu. (2024). Hardware-Based Time Synchronization for a Multi-Sensor System. IEEE International Conference on Intelligent Robots and Systems, 4600–4607. https://doi.org/10.1109/IROS58592.2024.10802693
    Zong, W., Zhang, C., Wang, Z., Zhu, J., & Chen, Q. (2018). Architecture design and implementation of an autonomous vehicle. IEEE Access, 6, 21956–21970. https://doi.org/10.1109/ACCESS.2018.2828260

    下載圖示
    校外:立即公開
    QR CODE