| 研究生: |
周士權 Chou, Shih-Chuan |
|---|---|
| 論文名稱: |
電泳法在固態及液態硒化鎘敏化太陽能電池上應用的研究 Applications of Electrophoresis in Fabrications of Solid and Liquid-States CdSe-Sensitized Solar Cells |
| 指導教授: |
李玉郎
Lee, Yuh-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 電泳 、硒化鎘 、半導體敏化太陽能電池 |
| 外文關鍵詞: | Electrophoresis, CdSe, Semiconductor sensitized solar cells |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在以鎘離子電泳方式增進半導體敏化材料硒化鎘(CdSe)在二氧化鈦(TiO2)光電極上的覆蓋率和沉積量。製程中以連續離子層反應法(Sucessive Ionic Layer Adsorption and Reaction, SILAR)將光電極浸泡在陰、陽離子前驅液中,使CdSe沉積在多孔性TiO2結構內。然而在一般的SILAR程序中離子不易擴散至孔洞內部,敏化材料易於孔洞外部成長,導致孔洞堵塞而降低其在TiO2表面的覆蓋率。為了改善此情形,本研究以電泳法來促進離子在孔洞內部的擴散,將TiO2光電極浸泡在含Cd2+離子的溶液中,以白金為對電極,並在TiO2光電極上施加負偏壓,藉由Cd2+的電泳作用來增進其在中孔洞TiO2表面的吸附,使得孔洞內外皆可完整覆蓋Cd2+,接著將光電極浸泡至Se2-溶液中,於孔隙結構內反應,製得高覆蓋率的CdSe半導體敏化層。
在固態CdSe敏化太陽能電池的製備上,電泳法輔助成長的程序,對光電極上CdSe敏化劑的沉積量及覆蓋率皆有大幅增加的效果,元件的光電轉化效率由0.04%提升至0.81%。同樣地,將電泳技術應用在液態CdSe敏化太陽能電池上,亦可將元件的光電轉化效率由1.28%提升至2.12%。
In this study, electrophoresis is used to improve the coverage rate and the deposition amount of CdSe semiconductor on TiO2 surface. Successive Ionic Layer Adsorption and Reaction is a process usually applied to deposit CdSe on porous TiO2 photoelectrode. In the process photoelectrode is immersed in the Cd2+ and Se2- precursor separately and form CdSe in the channel. However, the inefficiency of ion diffusion within the channel results in a deposition on the outer surface and the blockage of pores. Therefore, electrophoresis is exploited aimed at improving the ion diffusion. In the experiment, a platinum plate and a TiO2 photoelectrode set as the counter electrode and the working electrode. Both electrodes are immersed in a Cd2+ solution and applied a negative potential applied to the working electrode promotes Cd2+ adsorption on the TiO2 surface. Together with the subsequent immersion in Se2- solution, CdSe sensitized photoelectrode of high coverage rate is obtained.
Apply electrophoresis method on the solid state and liquid state CdSe sensitized solar cells, the results show that modified TiO2 photoelectrode has a great enhance of the amount of CdSe deposition and coverage, which promote photo current significantly. By electrophoresis method, the efficiency of solid state CdSe sensitized solar cell has increase from 0.04% to 0.81%. And the efficiency of liquid state CdSe sensitized solar cell has increase from 1.28% to 2.12%
1. H. Tsubomura, M. Matsumura, Y, Nomura and T. Amamiya, “Dye-sensitized zinc oxide/aqueous electrolyte/platinum photocell” Nature 261, 402 (1976)
2. B. O’Regan and M. Grätzel, “A low-cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 353, 737 (1991)
3. T. Miyasaka, M. Ikegami and Y. Kijitori,“Photovoltaic Performance of Plastic Dye-Sensitized Electrodes Prepared by Low-Temperature Binder-Free Coating of Mesoscopic Titania” J. Electrochem. Soc. 154, A455 (2007)
4. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel,“Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers” J. Am. Chem. Soc 127, 16835 (2005)
5. Shockley, H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells”J. Appl. Phys. 32, 510, (1961)
6. B. O’Regan and M. Grätzel, “A LowCost, HighEfficiency Solar Cell Based on DyeSensitized Colloidal TiO2 Films,”Nature, 353, 737740 (1991).
7. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang,“Nanowire DyeSensitized Solar Cells,” Nat. Mater., 4, 455459 (2005).
8. Md. A. Hossain, J. R. Jennings, Z. Y. Koh, and Q. Wang,“Carrier Generation and Collection in CdS/CdSeSensitized SnO2 Solar Cells Exhibiting Unprecedented Photocurrent Densities,” ACS Nano, 5(4), 31723181 (2011).
9. P. Guo and M. A. Aegerter, “Ru(II) Sensitized Nb2O5 Solar Cell Made by the SolGel Process,”Thin Solid Films, 351, 290294 (1999).
10. O. K. Varghese, M. Paulose1, and C. A. Grimes, “Long Vertically Aligned Titania Nanotubes on Transparent Conducting Oxide for Highly Efficient Solar Cells,” Nat. Nanotechnol., 4, 592597 (2009).
11. X. Feng, K. Shankar, O. K. Varghese, M. Paulose1, T. J. Latempa, and C. A. Grimes,“Vertically Aligned Single Crystal TiO2 Nanowire Arrays Grown Directly on Transparent Conducting Oxide Coated Glass: Synthesis Details and Applications,” Nano Lett., 8(11), 37813786 (2008).
12. J. Jiu, S. Isoda, F. Wang, and M. Adachi, “DyeSensitized Solar Cells Based on a SingleCrystalline TiO2 Nanorod Film,” J. Phys. Chem. B, 110, 20872092 (2006).
13. J. Ferber and J. Luther, “Computer Simulations of Light Scattering and Absorption in DyeSensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 54, 265275 (1998).
14. T. Yamaguchi, N. Tobe, D. Matsumoto, and H. Arakawa, “Highly Efficient Plastic Substrate DyeSensitized Solar Cells Using a Compression Method for Preparation of TiO2 Photoelectrodes,” Chem. Commun., 45, 47674769 (2007).
15. H. C. Weerasinghe, P. M. Sirimanne, G. V. Franks, G. P. Simon, and Y. B. Cheng, “Low Temperature Chemically Sintered NanoCrystalline TiO2 Electrodes for Flexible DyeSensitized Solar Cells,” J. Photochem. Photobiol. AChem., 213, 3036 (2010).
16. S. Ito, P. Chen, P. Comte, Md. K. Nazeeruddin, P. Liska, P. Péchy, and M. Grätzel, “Low Temperature Chemically Sintered NanoCrystalline TiO2 Electrodes for Flexible DyeSensitized Solar Cells,” Prog. Photovolt: Res. Appl., 15, 603612 (2007).
17. Y. Li, J. Hagen, W. Schaffrath, P. Otschik, and D. Haarer, “Titanium Dioxide Films for Photovoltaic Cells Derived From a SolGel Process,” Sol. Energy Mater. Sol. Cells, 56, 167174 (1999).
18. M. Grätzel, “Solar Energy Conversion by DyeSensitized Photovoltaic Cells,” Inorg. Chem. 44, 6841-6851, (2005)
19. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, “A Channel Flow Cell System Specifically Designed to Test the Efficiency of Redox Suttles in Dye Sensitized Solar Cells,” Solar Energy Mater. Solar Cells 70, 85-101 (2001)
20. N. Kopidakis, K. D. Benkstein, J. Lagemaat and A. J. Frank, “Transport-Limited Recombination of Photocarriers in Dye-Sensitized Nanocrystalline TiO2 Solar Cells” J. Phys. Chem. B 107, 11307 (2003)
21. D. Kuang, C. Klein, H. J. Snaith, J. Moser, R. Humphry-Baker, P. Comte, S. M. Zakeeruddin and M. Grätzel, “Ion Coordinating Sensitizer for High Efficiency Mesoscopic Dye-Sensitized Solar Cells: Influence of Lithium Ions on the Photovoltaic Performance of Liquid and Solid-State Cells” Nano Lett. 6, 669 (2006)
22. S. A. Haque, E. Palomares, B. M. Cho, A. N. M. Green, N. Hirata, D. R. Klug and J. R. Durrant, J. Am. Chem. Soc. 127, 3456 (2005)
23. P. Wang, S. M. Zakeeruddin, I. Exnar and M. Grätzel, “ Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy” Chem. Commun., 2972 (2002)
24. W. Kubo, T. Kitamura, K. Hanabusa, Y. Wada and S. Yanagida, “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator” Chem. Commun., 374 (2002)
25. N. Mohmeyer, D. Kuang, P. Wang, H. W. Schmidt, S. M. Zakeeruddin and M. Grätzel, “ An efficient organogelator for ionic liquids to prepare stable quasi-solidstate dye-sensitized solar cells” J. Mater. Chem. 16, 2978 (2006)
26. P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots,” J. Phys. Chem. B, 110, 2545125454 (2006).
27. H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grätzel, and Md. K. Nazeeruddin, “CdSe Quantum DotSensitized Solar Cells Exceeding Efficiency 1% at FullSun Intensity,” J. Phys. Chem. C, 112, 1160011608 (2008).
28. H. J. Lee, P. Chen, S. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Grätzel, and Md. K. Nazeeruddin, “Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator,”Laugmuir, 25(13), 76027608 (2009).
29. H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and Md. K. Nazeeruddin, “Efficient CdSe Quantum DotSensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process,”Nano Lett., 9(12), 42214227 (2009).
30. S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance Improvement of Sb2S3Sensitized Solar Cell by Introducing Hole Buffer Layer in Cobalt Complex Electrolyte,”Energy Environ. Sci., 4, 27992802 (2011).
31. Y. L. Lee and C. H. Chang, “Efficient Polysulfide Electrolyte for CdS Quantum DotSensitized Solar Cells,” J. Power Sources, 185, 584588 (2008).
32. B. Miller and A. Heller, “Semiconductor Liquid Junction Solar Cells Based on Anodic Sulphide Films,” Nature, 262, 680681 (1976).
33. G. Milczarek, A. Kasuya, S. Mamykin, T. Arai, K. Shinoda, and K. Tohji, “Optimization of a TwoCompartment Photoelectrochemical Cell for Solar Hydrogen Production,” Int. J. Hydrog. Energy, 28, 919926 (2003).
34. Y. Bessekhouad, M. Mohammedi, and M. Trari, “Hydrogen Photoproduction from Hydrogen Sulfide on Bi2S3 Catalyst,” Sol. Energy Mater. Sol. Cells, 73, 339350 (2002).
35. B. Li, L. Wang, B. Kang, P. Wang, and Y. Qiu, “Review of Recent Progress in SolidState DyeSensitized Solar Cells,”Sol. Energy Mater. Sol. Cells, 90, 549573 (2006).
36. Y. L. Lee, Y. J. Shen, and Y. M. Yang, “A Hybrid PVDFHFP/Nanoparticle Gel Electrolyte for DyeSensitized Solar Cell Applications,” Nanotechnology, 19, 455201 (2008).
37. C. L. Chen, H. Teng, and Y. L. Lee, “Preparation of Highly Efficient GelState DyeSensitized Solar Cells Using Polymer Gel Electrolytes Based on Poly(acrylonitrilecovinyl acetate),” J. Mater. Chem., 21, 628632 (2011).
38. Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, and A. Fujishima, “Fabrication of an Efficient SolidState DyeSensitized Solar Cell,” Langmuir, 19, 35723574 (2003).
39. B. O’Regan, F. Lenzmann, R. Muis, and J. Wienke, “A SolidState DyeSensitized Solar Cell Fabricated with PressureTreated P25TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics,” Chem. Mater., 14, 50235029 (2002).
40. U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, and M. Grätzel, “SolidState DyeSensitized Mesoporous TiO2 Solar Cells with High PhotontoElectron Conversion Efficiencies,” Nature, 395, 583585 (1998).
41. R. Plass, S. Pelet, J. Krueger, and M. Grätzel, “Quantum Dot Sensitization of OrganicInorganic Hybrid Solar Cells,” J. Phys. Chem. B, 106, 75787580 (2002).
42. H. J. Snaith, A. J. Moule, C. Klein, K. Meerholz, R. H. Friend, and M. Grätzel, “Efficiency Enhancements in SolidState Hybrid Solar Cells via Reduced Charge Recombination and Increased Light Capture,”Nano Lett., 7(11), 33723376 (2007).
43. S. J. Moon, Y. Itzhaik, J. H. Yum, S. M. Zakeeruddin, G. Hodes, and M. Grätzel, “Sb2S3Based Mesoscopic Solar Cell using an Organic Hole Conductor,” J. Phys. Chem. Lett., 1, 15241527 (2010).
44. N. Cai, S. J. Moon, L. CeveyHa, T. Moehl, R. HumphryBaker, P. Wang, S. M. Zakeeruddin, and M. Grätzel, “An Organic DπA Dye for Record Efficiency SolidState Sensitized Heterojunction Solar Cells,” Nano Lett., 11, 14521456 (2011).
45. X. Liu, W. Zhang, S. Uchida, L. Cai, B. Liu, and S. Ramakrishna, “An Efficient OrganicDyeSensitized Solar Cell with in situ Polymerized Poly(3,4ethylenedioxythiophene) as a HoleTransporting Material,” Adv. Mater., 22, E150E155 (2010).
46. J. K. Koh, J. Kim, B. Kim, J. H. Kim, and E. Kim, “Highly Efficient, IodineFree DyeSensitized Solar Cells with SolidState Synthesis of Conducting Polymers,”Adv. Mater., 23, 16411646 (2011).
47. J. A. Chang, J. H. Rhee, S. H. Im, Y. H. Lee, H. J. Kim, S. I. Seok, Md. K. Nazeeruddin, and M. Grätzel, “HighPerformance Nanostructured InorganicOrganic Heterojunction Solar Cells,” Nano Lett., 10, 26092612 (2010).
48. C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, and K. J. Kim, “Enhanced Performance of a DyeSensitized Solar Cell with an ElectrodepositedPlatinum Counter Electrode,” Electrochim. Acta, 53, 28902896 (2008).
49. X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, “Effect of the Thickness of the Pt Film Coated on a Counter Electrode on the Performance of a DyeSensitized Solar Cell,” J. Electroanal. Chem., 570, 257263 (2004).
50. Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, and C. F. Chi, “A Platinum Counter Electrode with High Electrochemical Activity and High Transparency for DyeSensitized Solar Cells,” Electrochem. Commun., 12, 16621665 (2010).
51. N. Papageorgiou, W. F. Maier, and M. Grätzel, “An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media,” J. Electrochem. Soc., 144(3), 876884 (1997).
52. A. Kay and M. Grätzel, “Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder,” Sol. Energy Mater. Sol. Cells, 44, 99117 (1996).
53. T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. HumphryBaker, P. Comte, P. Péchy, and M. Grätzel, “Highly Efficient DyeSensitized Solar Cells Based on Carbon Black Counter Electrodes,” J. Electrochem. Soc., 153(12), A2255A2261 (2006).
54. K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. Nakamura, and K. Murata, “HighPerformance Carbon Counter Electrode for DyeSensitized Solar Cells,” Sol. Energy Mater. Sol. Cells, 79, 459469 (2003).
55. K. Suzuki, M. Yamaguchi, M. Kumagai, and S. Yanagida, “Application of Carbon Nanotubes to Counter Electrodes of Dyesensitized Solar Cells,” Chem. Lett., 32(1), 2829 (2003).
56. W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, “Efficient DyeSensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes,” ACS Appl. Mater. Interfaces, 1(6), 11451149 (2009).
57. L. Kavan, J. H. Yum, and M. Grätzel, “Optically Transparent Cathode for DyeSensitized Solar Cells Based on Graphene Nanoplatelets,” ACS Nano, 5(1), 165172 (2011).
58. J. D. RoyMayhew, D. J. Bozym, C. Punckt, and I. A. Aksay, “Functionalized Graphene as a Catalytic Counter Electrode in DyeSensitized Solar Cells,” ACS Nano, 4(10), 62036211 (2010).
59. J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, and S. Hao, “HighPerformance Polypyrrole Nanoparticles Counter Electrode for DyeSensitized solar cells,” J. Power Sources, 181, 172176 (2008).
60. Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, and L. Fan, “Application of Microporous Polyaniline Counter Electrode for DyeSensitized Solar Cells,” Electrochem. Commun., 10, 12991302 (2008).
61. S. Ahmad, J. H. Yum, H. J. Butt, Md. K. Nazeeruddin, and M. Grätzel, “Efficient Platinum−Free Counter Electrodes for DyeSensitized Solar Cell Applications,” ChemPhysChem, 11, 28142819 (2010).
62. Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, “I−/I3− Redox Reaction Behavior on Poly(3,4ethylenedioxythiophene) Counter Electrode in DyeSensitized Solar Cells,” J. Photochem. Photobiol. AChem., 164, 153157 (2004).
63. Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida, “Application of Poly(3,4ethylenedioxythiophene) to Counter Electrode in DyeSensitized Solar Cells,” Chem. Lett., 31(10), 10601061 (2002).
64. T. C. Wei, C. C. Wan, and Y. Y. Wang, “Poly(Nvinyl2pyrrolidone) Capped Platinum Nanoclusters on IndiumTin Oxide Glass as Counterelectrode for DyeSensitized Solar Cells,” Appl. Phys. Lett., 88, 103122 (2006).
65. W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, “Transparent Graphene/PEDOT–PSS Composite Films as Counter Electrodes of DyeSensitized Solar Cells,” Electrochem. Commun., 10, 15551558 (2008).
66. B. Fan, X. Mei, K. Sun, and J. Ouyang, “Conducting Polymer/Carbon Nanotube Composite as Counter Electrode of DyeSensitized Solar Cells,” Appl. Phys. Lett., 93, 143103 (2008).
67. K. C. Huang, Y. C. Wang, R. X. Dong, W. C. Tsai, K. W. Tsai, C. C. Wang, Y. H. Chen, R. Vittal, J. J. Lin, and K. C. Ho, “A High Performance DyeSensitized Solar Cell with a Novel Nanocomposite Film of PtNP/MWCNT on the Counter Electrode,” J. Mater. Chem., 20, 40674073 (2010).
68. Y. L. Lee and Y. S. Lo, “Highly Efficient QuantumDotSensitized Solar Cell Based on CoSensitization of CdS/CdSe,” Adv. Funct. Mater., 19, 604609 (2009).
69. Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng, and D. Li, “Application of Carbon Counterelectrode on CdS Quantum DotSensitized Solar Cells (QDSSCs),” Electrochem. Commun., 12, 327330 (2010).
70. S. Q. Fan, B. Fang, J. H. Kim, J. J. Kim, J. S. Yu, and J. Ko, Appl. Phys. Lett., 96, 063501 (2010).
71. S. Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J. S. Yu, and J. Ko, “Hierarchical Nanostructured Spherical Carbon with Hollow Core/Mesoporous Shell as a Highly Efficient Counter Electrode in CdSe QuantumDotSensitized Solar Cells,” Langmuir, 26(16), 1364413649 (2010).
72. G. Hodes and J. Manassen, “Electrocatalytic Electrodes for the Polysulfide Redox System,” J. Electrochem. Soc., 127(3), 544549 (1980).
73. Z. Yang, C. Y. Chen, C. W. Liu, and H. T. Chang, “Electrocatalytic Sulfur Electrodes for CdS/CdSe Quantum DotSensitized Solar Cells,” Chem. Commun., 46, 54855487 (2010).
74. Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li, and H. T. Chang, “Quantum DotSensitized Solar Cells Featuring CuS/CoS Electrodes Provide 4.1% Efficiency,” Adv. Energy Mater., 1, 259264 (2011).
75. Q. Shen, A. Yamada, S. Tamura, and T. Toyoda, “CdSe Quantum DotSensitized Solar Cell Employing TiO2 Nanotube WorkingElectrode and Cu2S CounterElectrode,” Appl. Phys. Lett., 97, 123107 (2010).
76. M. Deng, S. Huang, Q. Zhang, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “ScreenPrinted Cu2SBased Counter Electrode for QuantumDotSensitized Solar Cell,” Chem. Lett., 39, 11681170 (2010).
77. Z. Tachan, M. Shalom, I. Hod, S. Rühle, S. Tirosh, and A. Zaban, “PbS as a Highly Catalytic Counter Electrode for PolysulfideBased Quantum Dot Solar Cells,” J. Phys. Chem. C, 115, 61626166 (2011).
78. H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, “Dye Sensitised Zinc Oxide: Aqueous Electrolyte: Platinum Photocell,” Nature, 261, 402403 (1976).
79. B. O’Regan and M. Grätzel, “A LowCost, HighEfficiency Solar Cell Based on DyeSensitized Colloidal TiO2 Films,” Nature, 353, 737740 (1991).
80. Md. K. Nazeeruddin, A. Kay, I. Rodicio, R. HumphryBaker, E. Müller, P. Liska, N. Vlachopoulos, and M. Grätzel, “Conversion of Light to Electricity by cisX2Bis(2,2bipyridyl4,4dicarboxylate)ruthenium(II) Charge Transfer Sensitizers (X = C1, Br, I, CN, and SCN) on Nanocrystalline TiO2 Electrodes,” J. Am. Chem. Soc., 115, 63826390 (1993).
81. M. Grätzel, “Conversion of Sunlight to Electric Power by Nanocrystalline DyeSensitized Solar Cells,” J. Photochem. Photobiol. AChem., 164, 314 (2004).
82. Md. K. Nazeeruddin, P. Péchy, and M. Grätzel, “Efficient Panchromatic Sensitization of Nanocrystalline TiO2 Films by a Black Dye Based on a TrithiocyanatoRuthenium Complex,” Chem. Commun., 18, 17051706 (1997).
83. Md. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. HumphryBaker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2Based Solar Cells,” J. Am. Chem. Soc., 123, 16131624 (2001).
84. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, and L. Han, “DyeSensitized Solar Cells with Conversion Efficiency of 11.1%,” Jpn. J. Appl. Phys., 45(25), L638L640 (2006).
85. Md. K. Nazeeruddin, S. M. Zakeeruddin, R. HumphryBaker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, ChristianH. Fischer, and M. Grätzel, “AcidBase Equilibria of (2,2′Bipyridyl4,4′dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on ChargeTransfer Sensitization of Nanocrystalline Titania,” Inorg. Chem., 38, 62986305 (1999).
86. C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. Ngocle, J. D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M. Grätzel, “Highly Efficient LightHarvesting Ruthenium Sensitizer for ThinFilm DyeSensitized Solar Cells,” ACS Nano, 3(10), 31033109 (2009).
87. Y. Cao, Y. Bai, Q. Yu, Y. Cheng, S. Liu, D. Shi, F. Gao, and P. Wang, “DyeSensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2(Hexylthio)thiophene Conjugated Bipyridine,” J. Phys. Chem. C, 113, 62906297 (2009).
88. Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, “HighEfficiency DyeSensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States,” ACS Nano, 4(10), 60326038 (2010).
89. Yella A.; Lee H. W.; Tsao H. N, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency” SCIENCE, 334(6056), 629-634 (2011)
90. R. Vogel, P. Hoyer, and H. Weller, “QuantumSized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous WideBandgap Semiconductors,” J. Phys. Chem., 98, 3183 (1994).
91. A. Zaban, O. I. Mićić, B. A. Gregg, and A. J. Nozik, “Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots,” Langmuir, 14, 3153 (1998).
92. S. M. Yang, C. H. Huang, J. Zhai, Z. S. Wang, and L. Jiang, “High Photostability and Quantum Yield of Nanoporous TiO2 Thin Film Electrodes CoSensitized with Capped Sulfides,” J. Mater. Chem., 12, 14591464 (2002).
93. R. Plass, S. Pelet, J. Krueger, and M. Grätzel, “Quantum Dot Sensitization of OrganicInorganic Hybrid Solar Cells,” J. Phys. Chem. B, 106, 75787580 (2002).
94. P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, “Nanocrystalline TiO2 Solar Cells Sensitized with InAs Quantum Dots,” J. Phys. Chem. B, 110, 2545125454 (2006).
95. S. C. Lin, Y. L. Lee, C. H. Chang, Y. L. Shen, and Y. M. Yang, “Quantum DotSensitized Solar Cells: Assembly of CdS Quantum Dots Coupling Techniques of SelfAssembly Monolayer and Chemical Bath Deposition,” Appl. Phys. Lett., 90, 143517 (2007).
96. C. H. Chang and Y. L. Lee, “Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in QuantumDotSensitized Solar Cells,” Appl. Phys. Lett., 91, 053503 (2007).
97. L. J. Diguna, Q. Shen, J. Kobayashi, and T. Toyoda, “High Efficiency of CdSe QuantumDotSensitized TiO2 Inverse Opal Solar Cells,” Appl. Phys. Lett., 91, 023116 (2007).
98. Y. L. Lee, B. M. Huang, and H. T. Chien, “Highly Efficient CdSeSensitized TiO2 Photoelectrode for QuantumDotSensitized Solar Cell Applications,” Chem. Mater., 20, 69036905 (2008).
99. Y. L. Lee and Y. S. Lo, “Highly Efficient QuantumDotSensitized Solar Cell Based on CoSensitization of CdS/CdSe,” Adv. Funct. Mater., 19, 604609 (2009).
100. S. Q. Fan, D. Kim, J. J. Kim, D. W. Jung, S. O. Kang, and J. Ko, “Highly Efficient CdSe QuantumDotSensitized TiO2 Photoelectrodes for Solar Cell Applications,” Electrochem. Commun., 11, 13371339 (2009).
101. H. J. Lee, M. Wang, P. Chen, D. R. Gamelin, S. M. Zakeeruddin, M. Grätzel, and Md. K. Nazeeruddin, “Efficient CdSe Quantum DotSensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process,” Nano Lett., 9(12), 42214227 (2009).
102. Q. Zhang, Y. Zhang, S. Huang, X. Huang, Y. Luo, Q. Meng, and D. Li, “Application of Carbon Counterelectrode on CdS Quantum DotSensitized Solar Cells (QDSSCs),” Electrochem. Commun., 12, 327330 (2010).
103. S. Q. Fan, B. Fang, J. H. Kim, B. Jeong, C. Kim, J. S. Yu, and J. Ko, “Ordered Multimodal Porous Carbon as Highly Efficient Counter Electrodes in DyeSensitized and QuantumDot Solar Cells,” Langmuir, 26(16), 1364413649 (2010).
104. L. W. Chong, H. T. Chien, and Y. L. Lee, “Assembly of CdSe onto Mesoporous TiO2 Films Induced by a SelfAssembled Monolayer for Quantum DotSensitized Solar Cell Applications,” J. Power Sources, 195, 51095113 (2010).
105. Y. H. Lee, S. H. Im, J. H. Rhee, J. H. Lee, and S. I. Seok, “Performance Enhancement through PostTreatments of CdSSensitized Solar Cells Fabricated by Spray Pyrolysis Deposition,” ACS Appl. Mater. Interfaces, 6, 16481652 (2010).
106. A. Tubtimtae, K. L. Wu, H. Y. Tung, M. W. Lee, and G. J. Wang, “Ag2S Quantum DotSensitized Solar Cells,” Electrochem. Commun., 12, 11581160 (2010).
107. Z. Yang and H. T. Chang, “CdHgTe and CdTe Quantum Dot Solar Cells Displaying an Energy Conversion Efficiency Exceeding 2%,” Sol. Energy Mater. Sol. Cells, 94, 20462051 (2010).
108. V. G. Pedro, X. Xu, I. M. Seró, and J. Bisquert, “Modeling HighEfficiency Quantum Dot Sensitized Solar Cells,” ACS Nano, 4(10), 57835790 (2010).
109. Z. Yu, Q. Zhang, D. Qin, Y. Luo, D. Li, Q. Shen, T. Toyoda, and Q. Meng, “Highly Efficient QuasiSolidState QuantumDotSensitized Solar Cell Based on Hydrogel Electrolytes,” Electrochem. Commun., 12, 17761779 (2010).
110. H. Chen, W. Li, H. Liu, and L. Zhu, “Performance Enhancement of CdSSensitized TiO2 Mesoporous Electrode with Two Different Sizes of CdS Nanoparticles,” Microporous Mesoporous Mat., 138, 235238 (2011).
111. Y. H. Lee, S. H. Im, J. H. Lee, and S. I. Seok, “Porous CdSSensitized Electrochemical Solar Cells,” Electrochim. Acta, 56, 20872091 (2011).
112. B. Fang, M. Kim, S. Q. Fan, J. H. Kim, D. P. Wilkinson, J. Ko, and J. S. Yu, “Facile Synthesis of Open Mesoporous Carbon Nanofibers With Tailored Nanostructure as a Highly Efficient Counter Electrode in CdSe QuantumDotSensitized Solar Cells,” J. Mater. Chem., 21, 87428748 (2011).
113. Z. Yang, C. Y. Chen, C. W. Liu, C. L. Li, and H. T. Chang, Adv. Energy Mater., 1, 259264 (2011).
114. Q. Zhang, X. Guo, X. Huang, S. Huang, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “Highly Efficient CdS/CdSeSensitized Solar Cells Controlled by the Structural Properties of Compact Porous TiO2 Photoelectrodes,” Phys. Chem. Chem. Phys., 13, 46594667 (2011).
115. X. Huang, S. Huang, Q. Zhang, X. Guo, D. Li, Y. Luo, Q. Shen, T. Toyoda, and Q. Meng, “A Flexible Photoelectrode for CdS/CdSe Quantum DotSensitized Solar Cells (QDSSCs),” Chem. Commun., 47, 26642666 (2011).
116. Q. Yu, Y. Wang, Z. Yi, N. Zu, J. Zhang, M. Zhang, and P. Wang, “HighEfficiency DyeSensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States,” ACS Nano, 4(10), 60326038 (2010).
117. A. Braga, S. Giménez, I. Concina, A. Vomiero, and I. MoraSeró, “Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes,” J. Phys. Chem. Lett., 2, 454460 (2011).
118. S. H. Im, H. J. Kim, J. H. Rhee, C. S. Lim, and S. I. Seok, “Performance Improvement of Sb2S3Sensitized Solar Cell by Introducing Hole Buffer Layer in Cobalt Complex Electrolyte,” Energy Environ. Sci., 4, 27992802 (2011).
119. H. J. Im; R. C. Lee; J. W. Lee, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” NANOSCALE., 3, 4088-4093 (2011)
120. Y. Wang and N. Herron, “NanometerSized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties,” J. Phys. Chem., 95, 525532 (1991).
121. W. W. Yu and X. Peng, “Formation of HighQuality CdS and Other IIVI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers,” Angew. Chem. Int. Ed., 41, 2368 (2002).
122. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals,” Chem. Mater., 15, 2854 (2003).
123. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, and S. Weiss, “Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics,” Science, 307, 538 (2005).
124. A. J. Nozik, “Multiple Exciton Generation in Semiconductor Quantum Dots,” Chem. Phys. Lett., 457, 311 (2008).
125. R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion,” Phys. Rev. Lett., 92(18), 186601 (2004).
126. A. J. Nozik, “Quantum Dot Solar Cells,” Physica E, 14, 115120 (2002).
127. A. J. Nozik, “Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to UltrahighEfficiency Solar Photon Conversion,” Inorg. Chem., 44, 68936899 (2005).
128. R. T. Ross and A. J. Nozik, “Efficiency of HotCarrier Solar Energy Converters,” J. Appl. Phys., 53(5), 38133818 (1982).
129. M. C. Hanna and A. J. Nozik, “Solar Conversion Efficiency of Photovoltaic and Photoelectrolysis Cells with Carrier Multiplication Absorbers,” J. Appl. Phys., 100, 074510 (2006).
130. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Rühle, D. Cahen, and G. Hodes, “Chemical Bath Deposited CdS/CdSeSensitized Porous TiO2 Solar Cells,” J. Photochem. Photobiol. AChem., 181, 306313 (2006).
131. H. J. Lee, J. Bang, J. Park, S. Kim, and S. M. Park, “Multilayered Semiconductor (CdS/CdSe/ZnS)Sensitized TiO2 Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes,” Chem. Mater., 22, 5636–5643 (2010).
132. C. LévyClément, R. TenaZaera, M. A. Ryan, A. Katty, and G. Hodes, “CdSeSensitized pCuSCN/Nanowire nZnO Heterojunctions,” Adv. Mater., 17, 15121515 (2005).
133. N. Guijarro, T. LanaVillarreal, I. MoraSeró, J. Bisquert, and R. Gómez, “CdSe Quantum DotSensitized TiO2 Electrodes: Effect of Quantum Dot Coverage and Mode of Attachment,” J. Phys. Chem. C, 113, 42084214 (2009).
134. S. Giménez, I. MoraSeró, L. Macor, N. Guijarro, T. LanaVillarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, “Improving the Performance of Colloidal QuantumDotSensitized solar cells,” Nanotechnology, 20, 295204 (2009).
135. I. MoraSeró, S. Giménez, T. Moehl, F. FabregatSantiago, T. LanaVillarreal, R. Gómez, and J. Bisquert, “Factors Determining the Photovoltaic Performance of a CdSe Quantum Dot Sensitized Solar Cell: the Role of the Linker Molecule and of the Counter Electrode,” Nanotechnology, 19, 424007 (2008).
136. E. MartínezFerrero, I. MoraSeró, J. Albero, S. Giménez, J. Bisquert, and E. Palomares, “Charge Transfer Kinetics in CdSe Quantum Dot Sensitized Solar Cells,” Phys. Chem. Chem. Phys., 12, 28192821 (2010).
137. G. Hodes, “Comparison of Dye and SemiconductorSensitized Porous Nanocrystalline Liquid Junction Solar Cells,” J. Phys. Chem. C, 112, 1777817787 (2008).
138. S. K. Haram, A. J. Bard, “Scanning Electrochemical Microscopy. 42. Studies of the Kinetics and Photoelectrochemistry of Thin Film CdS/Electrolyte Interface” J. Phys. Chem. B 105, 8192 (2001)
139. M. L. Breen, J. T. Woodward, IV, D. K. Schwartz, “Direct Evidence for an Ion-by-Ion Deposition Mechanism in Solution Growth of CdS Thin Films” Chem. Mater. 10, 710 (1998)
140. P. O’Brien, J. McAleese, “Developing an Understanding of the Processes Controlling the Chemical Bath Deposition of ZnS and CdS” J. Mater. Chem. 8, 2309 (1998)
141. J. L. Blackburn, D. C. Selmarten, A. J. Nozik, “Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in-situ Chemical Bath Deposition” J. Phys. Chem. B 107, 14154 (2003)
142. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature” J. Coll. Interf. Sci. 252, 77 (2002)
143. R. S. Mane, S. J. Roh, O.S. Joo, C. D. Lokhande, S. H. Han, “Improved Performance of Dense TiO2/CdSe Coupled Thin Films by Low Temperature Process” Electrochim. Acta 50, 2453 (2005)
144. I. K. Ding, N. Tetreault, J. Brillet, “Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance,” Advanced Function Materials. 19, 2431-2436 (2009)
145. A. Salant, M. Shalom,I. Hod, “Quantum Dot Sensitized Solar Cells with Improved Efficiency Prepared Using Electrophoretic Deposition,” ACS NANO. 4, 5962-5968 (2010)
146. P. Ardalan, Brennan Thomas P., H. Lee, “Effects of Self-Assembled Monolayers on Solid-State CdS Quantum Dot Sensitized Solar Cells,” ACS NANO. 5, 1495-1504 (2011)