簡易檢索 / 詳目顯示

研究生: 阮垂蓉
Ruan, Chuei-Rong
論文名稱: 運用台灣第二型糖尿病患者建立與驗證糖尿病腎病變之健康與經濟評估模型
Development and validation of a simulation model for diabetic kidney disease among patients with type 2 diabetes for health and economic evaluations in Taiwan
指導教授: 歐凰姿
Ou, Huang-Tz
共同指導教授: 郭士禎
Kuo, Shih-Chen
林威宏
Lin, Wei-Hung
黃千惠
Huang, Chien-Huei
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 177
中文關鍵詞: 糖尿病腎病變多狀態轉換模型風險預測模型模型驗證模型更新
外文關鍵詞: diabetic kidney disease, multi-state transition model, risk prediction model, model validation, model updating
相關次數: 點閱:156下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景與目的
    糖尿病腎病變 (diabetic kidney disease, DKD) 是導致糖尿病患者末期腎病變 (end stage renal disease, ESRD) 最主要的原因,為個人和整體社會經濟都帶來嚴重的負面影響。國際針對糖尿病腎病變的疾病進程已發展出各類型疾病預測模型 (disease progression model);其中基於風險方程式的多狀態轉換模型 (risk equation-based, multi-state transition model) 在醫療決策中扮演重要的角色。目前臺灣仍缺乏以風險方程式建構的多狀態轉換模型 (risk equation-based, multi-state transition model) 來模擬糖尿病腎病變疾病進程。現有的風險方程式主要來自於白人族群,包含:美國 RECODe 模型;英國 UKPDS-OM2 模型。而由華人族群建立的 CHIME 模型,在華人或亞洲族群的風險預測能力表現較 UKPDS-OM2 模型及 RECODe 模型佳,然而上述這些風險方程式於臺灣人適用性尚待驗證。
    本研究旨在驗證及更新現有風險方程式,並基於更新後的風險方程式建立臺灣第二型糖尿病族群的糖尿病腎病變預測模型,用於未來臨床照護以及藥物經濟學評估,進一步提供醫療政策參酌。

    研究方法
    首先,根據文獻回顧結果,建立模擬糖尿病腎病變疾病進程之多狀態轉換模型 (multi-state transition model)。本研究所建立的模型包含五個狀態,分別是正常白蛋白尿、微量白蛋白尿、巨量白蛋白尿、腎衰竭和死亡。接著尋找相關的風險預測模型,以套用於多狀態轉換模型。對於正常白蛋白尿轉為微量白蛋白尿/巨量白蛋白尿的轉移機率,本研究套用 RECODe 模型。而針對正常白蛋白尿轉為腎衰竭的轉移機率,本研究進行 RECODe、UKPDS-OM2 和 CHIME 三個模型的比較。最後,利用成大醫院電子病歷的資料,評估現有風險預測模型的預測能力 (模型鑑別力與校準度),並選出表現最佳之模型,進一步重新校準,使其適用於臺灣族群。

    研究結果
    針對微量白蛋白尿事件,RECODe 模型的鑑別力不甚理想 (C 統計量為 0.62),模型校準斜率和校準截距分別為 1.6 和 0.16。針對巨量白蛋白尿事件,RECODe 模型的鑑別力較好 (C 統計量為 0.76),模型校準斜率和校準截距分別為 4.38 和 0.0486。針對腎衰竭事件,CHIME 模型的鑑別力 (C 統計量為0.78) 優於 RECODe 模型 (C統計量為0.64) 和UKPDS-OM2模型 (C統計量為 0.60)。然而,三個模型都高估腎衰竭的發生 (校準斜率介於 0.15 和 0.33 之間,校準截距介於 0.004 和 0.03 之間)。基於以上結果,本研究選擇 RECODe 模型以及 CHIME 模型以分別預測白蛋白尿和腎衰竭的發生,並對這些模型進行進一步的更新。重新校準後,風險預測模型的校準度改善 (校準斜率接近於 1,校準截距接近於 0),更適用於臺灣第二型糖尿病族群。

    研究結論
    針對臺灣第二型糖尿病患者,更新的 RECODe 和 CHIME 模型可分別用於預測蛋白尿及腎衰竭的發生。在臨床上本研究結果可被應用於篩選出糖尿病腎病變的高風險患者,提早給予有效治療。此外,亦能透過本研究所建立的模型評估具有腎臟保護效果之糖尿病藥品所帶來的長期療效、安全性及經濟效益。同時,本研究提供風險預測模型的驗證和更新流程,可應用於未來其他疾病領域的研究。

    Various types of simulation models have been developed to reflect the progression of diabetic kidney disease (DKD), including risk equation-based models that utilize individual factors to predict the probability of renal outcomes. However, Taiwan currently lacks a risk equation-based model to predict the overall progression of DKD among patients with diabetes. Existing risk equations are primarily based on Caucasian populations, and their performance among the Taiwanese population remains unknown. Hence, the main objective of this study is to validate and update the existing risk equations and subsequently construct a risk equation-based multi-state transition model for the overall progression of DKD among the Taiwanese population with type 2 diabetes. To achieve this objective, a multi-state transition model with five health states was constructed based on a literature review. These health states include normal albuminuria, microalbuminuria, macroalbuminuria, renal failure, and death. The transition probabilities for this model were calculated using the RECODe, UKPDS-OM2, and CHIME models. The predictive ability of these risk prediction models, in terms of discrimination and calibration, will be evaluated using electronic medical records data from National Cheng Kung University Hospital. Regarding albuminuria, the RECODe model demonstrated acceptable discrimination but underestimated the results. For renal failure, the CHIME model exhibited superior discriminative ability compared to the RECODe model and the UKPDS-OM2 model. However, all three models overestimated the occurrence of renal failure. After recalibration, the updated RECODe and CHIME models will be more feasible for predicting albuminuria and renal failure among the Taiwanese type 2 diabetes population.

    中文摘要 I EXTENDED ABSTRACT III 誌謝 VI 目錄 IX 表目錄 XIII 圖目錄 XV 第一篇、運用臺灣第二型糖尿病患者建立與驗證糖尿病腎病變之健康與經濟評估模型 1 第一章、研究背景 1 第二章、文獻回顧 2 第一節、第二型糖尿病簡介 2 2.1.1 第二型糖尿病之定義與診斷 2 2.1.2 第二型糖尿病之流行病學 3 2.1.3 第二型糖尿病之慢性併發症 5 2.1.4 第二型糖尿病之治療 6 第二節、糖尿病腎病變簡介 10 2.2.1 糖尿病腎病變之定義 10 2.2.2 糖尿病腎病變之流行病學 10 2.2.3 糖尿病腎病變之危險因子 13 2.2.4 第二型糖尿病腎病變之分期 16 2.2.5 第二型糖尿病腎病變之疾病進展 17 2.2.6 第二型糖尿病腎病變之治療 20 第三節、疾病風險預測模型 28 2.3.1 疾病風險預測模型之定義及應用 28 2.3.2 疾病風險預測模型之驗證 28 2.3.3 疾病風險預測模型之調整及更新 31 第四節、糖尿病腎病變之風險預測模型 33 第五節、糖尿病腎病變之多狀態轉換模型 43 第三章、研究目的及重要性 50 第四章、研究方法 51 第一節、研究架構 51 第二節、風險預測模型之選擇 51 4.2.1 馬可夫模型建置 51 4.2.2 風險預測模型之選擇 52 第三節、風險預測模型之驗證及更新 53 4.3.1 研究類型 53 4.3.2 研究材料 53 4.3.3 研究對象 53 4.3.4 觀察區間 55 4.3.5 研究對象之基本特質 55 4.3.6 遺失值的插補 57 4.3.7 研究事件 57 4.3.8 研究事件的觀察及預測機率之計算 57 4.3.9 資料分割 60 4.3.10 研究名詞及操作型定義 61 4.3.11 敏感性分析 64 第四節、模型重新校準 65 第五節、統計分析 68 4.5.1 統計工具 68 4.5.2 統計模式 68 4.5.3 資料分析方法 68 第五章、研究結果 70 第一節、研究對象之篩選流程 70 第二節、研究對象之基本特徵 71 第三節、資料分割之結果 74 第四節、研究事件之觀察與預測發生機率 76 第五節、風險預測模型的預測能力之結果 78 5.5.1 微量白蛋白尿 78 5.5.2 巨量白蛋白尿 79 5.5.3 腎衰竭 80 第六節、敏感性分析之結果 83 5.6.1 調整微量白蛋白尿的定義 83 5.6.2 調整巨量白蛋白尿的定義 84 5.6.3 調整腎衰竭的定義 85 第七節、風險預測模型更新之結果 87 5.7.1 調整整體基礎風險的模型重新校準 87 5.7.2 針對不同風險群調整基礎風險的模型重新校準 93 第六章、討論 96 第一節、糖尿病腎病變多狀態轉換模型之架構 96 第二節、糖尿病腎病變風險預測模型 98 6.2.1 臺灣糖尿病腎病變風險預測模型 98 6.2.2 其他國家糖尿病腎病變風險預測模型 99 6.2.3 本研究結果與過去研究之比較 102 6.2.4 敏感性分析之結果 114 6.2.5 風險預測模型之更新結果 115 第三節、研究優勢與限制 117 6.3.1 研究優勢 117 6.3.2 研究限制 117 第七章、研究結果的應用 119 第八章、結論 121 第九章、未來研究方向 122 第二篇、藥師早期介入評估嚴重藥物皮膚不良反應 123 第一章、前言 123 第一節、嚴重型藥物皮膚不良反應之簡介 123 第二節、臨床藥師在評估 SCARs 的角色 123 第三節、成大醫院評估嚴重藥物皮膚不良反應之流程 125 第二章、臨床服務目的與方法 126 第一節、服務目的 126 第二節、服務方法 126 2.2.1 服務區問 126 2.2.2 服務對象 126 2.2.3 收案方式 126 2.2.4 服務內容與流程 126 第三章、結果分析 129 第一節、服務期間收錄之 SCARs 案例 129 第二節、服務期間收錄案例之記載 130 第三節、整理成大醫院 2022 年 SCARs 案例 134 第四章、未來方向 143 參考文獻 144 附錄 156 附錄 1、RECODE、UKPDS-OM2、CHIME 模型所納入的變項之定義 156 附錄 2、UPCR 換算成 UACR 之公式 161 附錄 3、研究族群共病症與觀察結果之ICD-9-CM、ICD-10-CM 診斷碼 162 附錄 4、藥品之 ATC 代碼 163 附錄 5、有/沒有發生腎藏相關事件的患者基本特徵之比較 164 附錄 6、敏感性分析之結果 170

    1. Global report on diabetes 2016. Accessed 2023 March 14th http://wwwwhoint/diabetes/global-report/en/
    2. 著作者: 社團法人中華民國糖尿病學會(2022)。書名: 2022 第 2 型糖尿病臨床照護指引。出版地:台北市。出版者: 社團法人中華民國糖尿病學會(2022).
    3. International Diabetes Federation. IDF Diabetes Atlas, 10th edn. Brussels, Belgium: International Diabetes Federation, 2021.
    4. 著作者: 社團法人中華民國糖尿病學會(2019)。臺灣糖尿病年鑑 2019 第 2 型糖尿病.
    5. 2020年國人全民健康保險就醫疾病資訊
    6. Ahmad E, Lim S, Lamptey R, Webb DR, Davies MJ. Type 2 diabetes. Lancet. Nov 19 2022;400(10365):1803-1820. doi:10.1016/s0140-6736(22)01655-5
    7. Fowler MJ. Microvascular and Macrovascular Complications of Diabetes. Clin Diabetes. 2008;26(2):77-82. doi:10.2337/diaclin.26.2.77
    8. Vithian K, Hurel S. Microvascular complications: pathophysiology and management. Clin Med (Lond). Oct 2010;10(5):505-9. doi:10.7861/clinmedicine.10-5-505
    9. ElSayed NA, Aleppo G, Aroda VR, et al. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Care in Diabetes—2023. Diabetes Care. 2022;46(Supplement_1):S49-S67. doi:10.2337/dc23-S004
    10. ElSayed NA, Aleppo G, Aroda VR, et al. 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Care in Diabetes-2023. Diabetes Care. Jan 1 2023;46(Suppl 1):S140-s157. doi:10.2337/dc23-S009
    11. Wang JS, Yen FS, Lin KD, Shin SJ, Hsu YH, Hsu CC. Epidemiological characteristics of diabetic kidney disease in Taiwan. J Diabetes Investig. Dec 2021;12(12):2112-2123. doi:10.1111/jdi.13668
    12. ElSayed NA, Aleppo G, Aroda VR, et al. 11. Chronic Kidney Disease and Risk Management: Standards of Care in Diabetes-2023. Diabetes Care. Jan 1 2023;46(Suppl 1):S191-s202. doi:10.2337/dc23-S011
    13. Anders HJ, Huber TB, Isermann B, Schiffer M. CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol. Jun 2018;14(6):361-377. doi:10.1038/s41581-018-0001-y
    14. 社團法人中華民國糖尿病學會 2019 台灣糖尿病腎臟疾病臨床照護指引.
    15. Thomas MC, Brownlee M, Susztak K, et al. Diabetic kidney disease. Nat Rev Dis Primers. Jul 30 2015;1:15018. doi:10.1038/nrdp.2015.18
    16. Retnakaran R, Cull CA, Thorne KI, Adler AI, Holman RR. Risk factors for renal dysfunction in type 2 diabetes: U.K. Prospective Diabetes Study 74. Diabetes. Jun 2006;55(6):1832-9. doi:10.2337/db05-1620
    17. Huang YY, Lin KD, Jiang YD, et al. Diabetes-related kidney, eye, and foot disease in Taiwan: an analysis of the nationwide data for 2000-2009. J Formos Med Assoc. Nov 2012;111(11):637-44. doi:10.1016/j.jfma.2012.09.006
    18. National Health Research Institutes. 2021 Annual Report on Kidney Disease in Taiwan. Available from https://library.nhri.org.tw/ebook/ Accessed April 22nd, 2023.
    19. Foley RN, Murray AM, Li S, et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol. Feb 2005;16(2):489-95. doi:10.1681/asn.2004030203
    20. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, et al. Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet. Jul 27 2013;382(9889):339-52. doi:10.1016/s0140-6736(13)60595-4
    21. Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. Jan 2003;63(1):225-32. doi:10.1046/j.1523-1755.2003.00712.x
    22. Wen CP, Chang CH, Tsai MK, et al. Diabetes with early kidney involvement may shorten life expectancy by 16 years. Kidney Int. Aug 2017;92(2):388-396. doi:10.1016/j.kint.2017.01.030
    23. Chung H, Crowe CL, Kong SX, et al. Descriptive study of the economic burden among patients with type 2 diabetes mellitus, chronic kidney disease, and chronic kidney disease and type 2 diabetes mellitus in a large US commercially insured population. J Manag Care Spec Pharm. Jan 2023;29(1):80-89. doi:10.18553/jmcp.2023.29.1.80
    24. Chen HY, Kuo S, Su PF, Wu JS, Ou HT. Health Care Costs Associated With Macrovascular, Microvascular, and Metabolic Complications of Type 2 Diabetes Across Time: Estimates From a Population-Based Cohort of More Than 0.8 Million Individuals With Up to 15 Years of Follow-up. Diabetes Care. Aug 2020;43(8):1732-1740. doi:10.2337/dc20-0072
    25. Alicic RZ, Rooney MT, Tuttle KR. Diabetic Kidney Disease: Challenges, Progress, and Possibilities. Clin J Am Soc Nephrol. Dec 7 2017;12(12):2032-2045. doi:10.2215/cjn.11491116
    26. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. Oct 9 2008;359(15):1577-89. doi:10.1056/NEJMoa0806470
    27. Hsu CC, Chang HY, Huang MC, et al. HbA1c variability is associated with microalbuminuria development in type 2 diabetes: a 7-year prospective cohort study. Diabetologia. Dec 2012;55(12):3163-72. doi:10.1007/s00125-012-2700-4
    28. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ. Sep 12 1998;317(7160):703-13.
    29. Schrier RW, Estacio RO, Esler A, Mehler P. Effects of aggressive blood pressure control in normotensive type 2 diabetic patients on albuminuria, retinopathy and strokes. Kidney Int. Mar 2002;61(3):1086-97. doi:10.1046/j.1523-1755.2002.00213.x
    30. Sheen YJ, Lin JL, Li TC, Bau CT, Sheu WH. Systolic blood pressure as a predictor of incident albuminuria and rapid renal function decline in type 2 diabetic patients. J Diabetes Complications. Nov-Dec 2014;28(6):779-84. doi:10.1016/j.jdiacomp.2014.08.002
    31. Davis TM, Ting R, Best JD, et al. Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia. Feb 2011;54(2):280-90. doi:10.1007/s00125-010-1951-1
    32. Mychaleckyj JC, Craven T, Nayak U, et al. Reversibility of fenofibrate therapy-induced renal function impairment in ACCORD type 2 diabetic participants. Diabetes Care. May 2012;35(5):1008-14. doi:10.2337/dc11-1811
    33. Chang YH, Chang DM, Lin KC, Hsieh CH, Lee YJ. High-density lipoprotein cholesterol and the risk of nephropathy in type 2 diabetic patients. Nutr Metab Cardiovasc Dis. Aug 2013;23(8):751-7. doi:10.1016/j.numecd.2012.05.005
    34. Tsai HJ, Hsu YH, Huang YW, Chang YK, Liu JS, Hsu CC. Use of non-steroidal anti-inflammatory drugs and risk of chronic kidney disease in people with Type 2 diabetes mellitus, a nationwide longitudinal cohort study. Diabet Med. Mar 2015;32(3):382-90. doi:10.1111/dme.12610
    35. Effect of a long-term behavioural weight loss intervention on nephropathy in overweight or obese adults with type 2 diabetes: a secondary analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. Oct 2014;2(10):801-9. doi:10.1016/s2213-8587(14)70156-1
    36. Lin HC, Peng CH, Chiou JY, Huang CN. Physical activity is associated with decreased incidence of chronic kidney disease in type 2 diabetes patients: a retrospective cohort study in Taiwan. Prim Care Diabetes. Dec 2014;8(4):315-21. doi:10.1016/j.pcd.2014.04.004
    37. Chung HF, Al Mamun A, Huang MC, et al. Obesity, weight change, and chronic kidney disease in patients with type 2 diabetes mellitus: A longitudinal study in Taiwan. J Diabetes. Nov 2017;9(11):983-993. doi:10.1111/1753-0407.12514
    38. Hsu CC, Hwang SJ, Tai TY, et al. Cigarette smoking and proteinuria in Taiwanese men with Type 2 diabetes mellitus. Diabet Med. Mar 2010;27(3):295-302. doi:10.1111/j.1464-5491.2010.02947.x
    39. Hsu CC, Chang HY, Huang MC, et al. Association between insulin resistance and development of microalbuminuria in type 2 diabetes: a prospective cohort study. Diabetes Care. Apr 2011;34(4):982-7. doi:10.2337/dc10-1718
    40. Lin CW, Chen IW, Lin YT, Chen HY, Hung SY. Association of unhealthy dietary behaviors with renal function decline in patients with diabetes. BMJ Open Diabetes Res Care. Jan 2020;8(1)doi:10.1136/bmjdrc-2019-000743
    41. Oshima M, Shimizu M, Yamanouchi M, et al. Trajectories of kidney function in diabetes: a clinicopathological update. Nat Rev Nephrol. Nov 2021;17(11):740-750. doi:10.1038/s41581-021-00462-y
    42. Tonneijck L, Muskiet MH, Smits MM, et al. Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment. J Am Soc Nephrol. Apr 2017;28(4):1023-1039. doi:10.1681/asn.2016060666
    43. Araki S, Haneda M, Sugimoto T, et al. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes. Oct 2005;54(10):2983-7. doi:10.2337/diabetes.54.10.2983
    44. Perkins BA, Ficociello LH, Ostrander BE, et al. Microalbuminuria and the risk for early progressive renal function decline in type 1 diabetes. J Am Soc Nephrol. Apr 2007;18(4):1353-61. doi:10.1681/asn.2006080872
    45. Yokoyama H, Araki S, Honjo J, et al. Association between remission of macroalbuminuria and preservation of renal function in patients with type 2 diabetes with overt proteinuria. Diabetes Care. Oct 2013;36(10):3227-33. doi:10.2337/dc13-0281
    46. de Boer IH, Gao X, Cleary PA, et al. Albuminuria Changes and Cardiovascular and Renal Outcomes in Type 1 Diabetes: The DCCT/EDIC Study. Clin J Am Soc Nephrol. Nov 7 2016;11(11):1969-1977. doi:10.2215/cjn.02870316
    47. Chapter 2: Definition, identification, and prediction of CKD progression. Kidney Int Suppl (2011). Jan 2013;3(1):63-72. doi:10.1038/kisup.2012.65
    48. Yoshida Y, Kashiwabara K, Hirakawa Y, et al. Conditions, pathogenesis, and progression of diabetic kidney disease and early decliner in Japan. BMJ Open Diabetes Res Care. Mar 2020;8(1)doi:10.1136/bmjdrc-2019-000902
    49. Furuichi K, Shimizu M, Yamanouchi M, et al. Clinicopathological features of fast eGFR decliners among patients with diabetic nephropathy. BMJ Open Diabetes Res Care. Jun 2020;8(1)doi:10.1136/bmjdrc-2019-001157
    50. Krolewski AS, Niewczas MA, Skupien J, et al. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care. 2014;37(1):226-34. doi:10.2337/dc13-0985
    51. Yamanouchi M, Furuichi K, Hoshino J, et al. Nonproteinuric Versus Proteinuric Phenotypes in Diabetic Kidney Disease: A Propensity Score-Matched Analysis of a Nationwide, Biopsy-Based Cohort Study. Diabetes Care. May 2019;42(5):891-902. doi:10.2337/dc18-1320
    52. Yokoyama H, Araki SI, Kawai K, et al. The Prognosis of Patients With Type 2 Diabetes and Nonalbuminuric Diabetic Kidney Disease Is Not Always Poor: Implication of the Effects of Coexisting Macrovascular Complications (JDDM 54). Diabetes Care. May 2020;43(5):1102-1110. doi:10.2337/dc19-2049
    53. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. Nov 2022;102(5s):S1-s127. doi:10.1016/j.kint.2022.06.008
    54. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med. Nov 11 1993;329(20):1456-62. doi:10.1056/nejm199311113292004
    55. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. Sep 20 2001;345(12):861-9. doi:10.1056/NEJMoa011161
    56. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. Sep 20 2001;345(12):851-60. doi:10.1056/NEJMoa011303
    57. Tuttle KR, Agarwal R, Alpers CE, et al. Molecular mechanisms and therapeutic targets for diabetic kidney disease. Kidney Int. Aug 2022;102(2):248-260. doi:10.1016/j.kint.2022.05.012
    58. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. Jul 28 2016;375(4):311-22. doi:10.1056/NEJMoa1603827
    59. Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med. Nov 10 2016;375(19):1834-1844. doi:10.1056/NEJMoa1607141
    60. Zelniker TA, Braunwald E. Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J Am Coll Cardiol. Feb 4 2020;75(4):422-434. doi:10.1016/j.jacc.2019.11.031
    61. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. Jun 13 2019;380(24):2295-2306. doi:10.1056/NEJMoa1811744
    62. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. Oct 8 2020;383(15):1436-1446. doi:10.1056/NEJMoa2024816
    63. Herrington WG, Staplin N, Wanner C, et al. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. Jan 12 2023;388(2):117-127. doi:10.1056/NEJMoa2204233
    64. Cosimato C, Agoritsas T, Mavrakanas TA. Mineralocorticoid receptor antagonists in patients with chronic kidney disease. Pharmacol Ther. Mar 2021;219:107701. doi:10.1016/j.pharmthera.2020.107701
    65. Bakris GL, Agarwal R, Anker SD, et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N Engl J Med. Dec 3 2020;383(23):2219-2229. doi:10.1056/NEJMoa2025845
    66. Pitt B, Filippatos G, Agarwal R, et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N Engl J Med. Dec 9 2021;385(24):2252-2263. doi:10.1056/NEJMoa2110956
    67. Moons KG, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. Jan 6 2015;162(1):W1-73. doi:10.7326/m14-0698
    68. Toll DB, Janssen KJ, Vergouwe Y, Moons KG. Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol. Nov 2008;61(11):1085-94. doi:10.1016/j.jclinepi.2008.04.008
    69. Ramspek CL, Jager KJ, Dekker FW, Zoccali C, van Diepen M. External validation of prognostic models: what, why, how, when and where? Clin Kidney J. Jan 2021;14(1):49-58. doi:10.1093/ckj/sfaa188
    70. van Giessen A, Peters J, Wilcher B, et al. Systematic Review of Health Economic Impact Evaluations of Risk Prediction Models: Stop Developing, Start Evaluating. Value Health. Apr 2017;20(4):718-726. doi:10.1016/j.jval.2017.01.001
    71. Binuya MAE, Engelhardt EG, Schats W, Schmidt MK, Steyerberg EW. Methodological guidance for the evaluation and updating of clinical prediction models: a systematic review. BMC Med Res Methodol. Dec 12 2022;22(1):316. doi:10.1186/s12874-022-01801-8
    72. Moons KG, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart. May 2012;98(9):691-8. doi:10.1136/heartjnl-2011-301247
    73. Demler OV, Paynter NP, Cook NR. Tests of calibration and goodness-of-fit in the survival setting. Stat Med. May 10 2015;34(10):1659-80. doi:10.1002/sim.6428
    74. Slieker RC, van der Heijden A, Siddiqui MK, et al. Performance of prediction models for nephropathy in people with type 2 diabetes: systematic review and external validation study. BMJ. Sep 28 2021;374:n2134. doi:10.1136/bmj.n2134
    75. Yang XL, So WY, Kong AP, et al. End-stage renal disease risk equations for Hong Kong Chinese patients with type 2 diabetes: Hong Kong Diabetes Registry. Diabetologia. Oct 2006;49(10):2299-308. doi:10.1007/s00125-006-0376-3
    76. Hayes AJ, Leal J, Gray AM, Holman RR, Clarke PM. UKPDS outcomes model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year United Kingdom Prospective Diabetes Study: UKPDS 82. Diabetologia. Sep 2013;56(9):1925-33. doi:10.1007/s00125-013-2940-y
    77. Basu S, Sussman JB, Berkowitz SA, Hayward RA, Yudkin JS. Development and validation of Risk Equations for Complications Of type 2 Diabetes (RECODe) using individual participant data from randomised trials. Lancet Diabetes Endocrinol. Oct 2017;5(10):788-798. doi:10.1016/s2213-8587(17)30221-8
    78. Willis M, Asseburg C, Slee A, Nilsson A, Neslusan C. Development and Internal Validation of a Discrete Event Simulation Model of Diabetic Kidney Disease Using CREDENCE Trial Data. Diabetes Ther. Nov 2020;11(11):2657-2676. doi:10.1007/s13300-020-00923-w
    79. Quan J, Ng CS, Kwok HHY, et al. Development and validation of the CHIME simulation model to assess lifetime health outcomes of prediabetes and type 2 diabetes in Chinese populations: A modeling study. PLoS Med. Jun 2021;18(6):e1003692. doi:10.1371/journal.pmed.1003692
    80. Inoguchi T, Okui T, Nojiri C, et al. A simplified prediction model for end-stage kidney disease in patients with diabetes. Sci Rep. Jul 21 2022;12(1):12482. doi:10.1038/s41598-022-16451-5
    81. Grams ME, Brunskill NJ, Ballew SH, et al. Development and Validation of Prediction Models of Adverse Kidney Outcomes in the Population With and Without Diabetes. Diabetes Care. Sep 1 2022;45(9):2055-2063. doi:10.2337/dc22-0698
    82. Lin Y, Shao H, Fonseca V, Anderson AH, Batuman V, Shi L. A prediction model of CKD progression among individuals with type 2 diabetes in the United States. J Diabetes Complications. Mar 2023;37(3):108413. doi:10.1016/j.jdiacomp.2023.108413
    83. Lin Y, Shao H, Fonseca V, Anderson AH, Batuman V, Shi L. A prediction model on incident chronic kidney disease among individuals with type 2 diabetes in the United States. Diabetes Obes Metab. Jun 19 2023;doi:10.1111/dom.15177
    84. Li HY, Lin HA, Nien FJ, et al. Serum Vascular Adhesion Protein-1 Predicts End-Stage Renal Disease in Patients with Type 2 Diabetes. PLoS One. 2016;11(2):e0147981. doi:10.1371/journal.pone.0147981
    85. Lin CC, Niu MJ, Li CI, et al. Development and validation of a risk prediction model for chronic kidney disease among individuals with type 2 diabetes. Sci Rep. Mar 21 2022;12(1):4794. doi:10.1038/s41598-022-08284-z
    86. Hayashino Y, Fukuhara S, Akizawa T, et al. Cost-effectiveness of administering oral adsorbent AST-120 to patients with diabetes and advance-stage chronic kidney disease. Diabetes Res Clin Pract. Nov 2010;90(2):154-9. doi:10.1016/j.diabres.2010.07.007
    87. Guinan K, Beauchemin C, Tremblay J, et al. Economic Evaluation of a New Polygenic Risk Score to Predict Nephropathy in Adult Patients With Type 2 Diabetes. Can J Diabetes. Mar 2021;45(2):129-136. doi:10.1016/j.jcjd.2020.06.010
    88. Sakthong P, Tangphao O, Eiam-Ong S, et al. Cost-effectiveness of using angiotensin-converting enzyme inhibitors to slow nephropathy in normotensive patients with diabetes type II and microalbuminuria. Nephrology. 2001;6(2):71-77. doi:https://doi.org/10.1046/j.1440-1797.2001.00036.x
    89. Cost-effectiveness of intensive glycemic control, intensified hypertension control, and serum cholesterol level reduction for type 2 diabetes. JAMA. May 15 2002;287(19):2542-51. doi:10.1001/jama.287.19.2542
    90. Eastman RC, Javitt JC, Herman WH, et al. Model of complications of NIDDM. I. Model construction and assumptions. Diabetes Care. May 1997;20(5):725-34. doi:10.2337/diacare.20.5.725
    91. Vijan S, Hofer TP, Hayward RA. Estimated benefits of glycemic control in microvascular complications in type 2 diabetes. Ann Intern Med. Nov 1 1997;127(9):788-95. doi:10.7326/0003-4819-127-9-199711010-00003
    92. Golan L, Birkmeyer JD, Welch HG. The cost-effectiveness of treating all patients with type 2 diabetes with angiotensin-converting enzyme inhibitors. Ann Intern Med. Nov 2 1999;131(9):660-7. doi:10.7326/0003-4819-131-9-199911020-00005
    93. Caro JJ, Klittich WS, Raggio G, et al. Economic assessment of troglitazone as an adjunct to sulfonylurea therapy in the treatment of type 2 diabetes. Clin Ther. Jan 2000;22(1):116-27. doi:10.1016/s0149-2918(00)87983-7
    94. van Os N, Niessen LW, Bilo HJ, Casparie AF, van Hout BA. Diabetes nephropathy in the Netherlands: a cost effectiveness analysis of national clinical guidelines. Health Policy. Apr 2000;51(3):135-47. doi:10.1016/s0168-8510(00)00063-4
    95. Bagust A, Hopkinson PK, Maier W, Currie CJ. An economic model of the long-term health care burden of Type II diabetes. Diabetologia. Dec 2001;44(12):2140-55. doi:10.1007/s001250100023
    96. Adarkwah CC, Gandjour A, Akkerman M, Evers SM. Cost-effectiveness of angiotensin-converting enzyme inhibitors for the prevention of diabetic nephropathy in The Netherlands--a Markov model. PLoS One. 2011;6(10):e26139. doi:10.1371/journal.pone.0026139
    97. van der Heijden AA, Feenstra TL, Hoogenveen RT, et al. Policy evaluation in diabetes prevention and treatment using a population-based macro simulation model: the MICADO model. Diabet Med. Dec 2015;32(12):1580-7. doi:10.1111/dme.12811
    98. Wu B, Zhang S, Lin H, Mou S. Prevention of renal failure in Chinese patients with newly diagnosed type 2 diabetes: A cost-effectiveness analysis. J Diabetes Investig. Jan 2018;9(1):152-161. doi:10.1111/jdi.12653
    99. Steen Carlsson K, Persson U. Cost-effectiveness of add-on treatments to metformin in a Swedish setting: liraglutide vs sulphonylurea or sitagplitin. J Med Econ. Sep 2014;17(9):658-69. doi:10.3111/13696998.2014.933110
    100. Palmer AJ, Annemans L, Roze S, Lamotte M, Rodby RA, Cordonnier DJ. An economic evaluation of irbesartan in the treatment of patients with type 2 diabetes, hypertension and nephropathy: cost-effectiveness of Irbesartan in Diabetic Nephropathy Trial (IDNT) in the Belgian and French settings. Nephrol Dial Transplant. Oct 2003;18(10):2059-66. doi:10.1093/ndt/gfg232
    101. Rodby RA, Chiou CF, Borenstein J, et al. The cost-effectiveness of irbesartan in the treatment of hypertensive patients with type 2 diabetic nephropathy. Clin Ther. Jul 2003;25(7):2102-19. doi:10.1016/s0149-2918(03)80208-4
    102. Zhou H, Isaman DJ, Messinger S, et al. A computer simulation model of diabetes progression, quality of life, and cost. Diabetes Care. Dec 2005;28(12):2856-63. doi:10.2337/diacare.28.12.2856
    103. Chen TH, Yen MF, Tung TH. A computer simulation model for cost-effectiveness analysis of mass screening for Type 2 diabetes mellitus. Diabetes Res Clin Pract. Nov 2001;54 Suppl 1:S37-42. doi:10.1016/s0168-8227(01)00307-2
    104. Srisubat A, Sriratanaban J, Ngamkiatphaisan S, Tungsanga K. Original article. Cost-effectiveness of annual microalbuminuria screening in Thai diabetics. Asian Biomedicine. 2017;8(3):371-379. doi:doi:10.5372/1905-7415.0803.301
    105. Howard K, White S, Salkeld G, et al. Cost-effectiveness of screening and optimal management for diabetes, hypertension, and chronic kidney disease: a modeled analysis. Value Health. Mar-Apr 2010;13(2):196-208. doi:10.1111/j.1524-4733.2009.00668.x
    106. Critselis E, Vlahou A, Stel VS, Morton RL. Cost-effectiveness of screening type 2 diabetes patients for chronic kidney disease progression with the CKD273 urinary peptide classifier as compared to urinary albumin excretion. Nephrol Dial Transplant. Mar 1 2018;33(3):441-449. doi:10.1093/ndt/gfx068
    107. Palmer AJ, Roze S, Valentine WJ, et al. The CORE Diabetes Model: Projecting long-term clinical outcomes, costs and cost-effectiveness of interventions in diabetes mellitus (types 1 and 2) to support clinical and reimbursement decision-making. Curr Med Res Opin. Aug 2004;20 Suppl 1:S5-26. doi:10.1185/030079904x1980
    108. Coyle D, Palmer AJ, Tam R. Economic evaluation of pioglitazone hydrochloride in the management of type 2 diabetes mellitus in Canada. Pharmacoeconomics. 2002;20 Suppl 1:31-42. doi:10.2165/00019053-200220001-00004
    109. Deerochanawong C, Vareesangthip K, Piyayotai D, Thongsuk D, Pojchaijongdee N, Permsuwan U. Cost-Utility Analysis of Dapagliflozin as an Add-On to Standard Treatment for Patients with Type 2 Diabetes and High Risk of Cardiovascular Disease in Thailand. Diabetes Ther. Jul 2021;12(7):1947-1963. doi:10.1007/s13300-021-01088-w
    110. Campbell HM, Boardman KD, Dodd MA, Raisch DW. Pharmacoeconomic analysis of angiotensin-converting enzyme inhibitors in type 2 diabetes: a Markov model. Ann Pharmacother. Jul 2007;41(7):1101-10. doi:10.1345/aph.1K074
    111. Blazek K, van Zwieten A, Saglimbene V, Teixeira-Pinto A. A practical guide to multiple imputation of missing data in nephrology. Kidney Int. Jan 2021;99(1):68-74. doi:10.1016/j.kint.2020.07.035
    112. Shao H, Yang S, Stoecker C, Fonseca V, Hong D, Shi L. Addressing Regional Differences in Diabetes Progression: Global Calibration for Diabetes Simulation Model. Value Health. Dec 2019;22(12):1402-1409. doi:10.1016/j.jval.2019.08.007
    113. Clinical prediction models: A practical approach to development, validation, and updating Ewout W. Steyerberg (2019). Second Edition, Springer Series Statistics for Biology and Health. Cham: Springer. 558 pages. ISBN: 978-3-030-16398-3.
    114. Sugrue DM, Ward T, Rai S, McEwan P, van Haalen HGM. Economic Modelling of Chronic Kidney Disease: A Systematic Literature Review to Inform Conceptual Model Design. Pharmacoeconomics. Dec 2019;37(12):1451-1468. doi:10.1007/s40273-019-00835-z
    115. Jiang G, Luk AOY, Tam CHT, et al. Progression of diabetic kidney disease and trajectory of kidney function decline in Chinese patients with Type 2 diabetes. Kidney Int. Jan 2019;95(1):178-187. doi:10.1016/j.kint.2018.08.026
    116. Yang L, Chu TK, Lian J, et al. Individualised risk prediction model for new-onset, progression and regression of chronic kidney disease in a retrospective cohort of patients with type 2 diabetes under primary care in Hong Kong. BMJ Open. Jul 8 2020;10(7):e035308. doi:10.1136/bmjopen-2019-035308
    117. Basu S, Sussman JB, Berkowitz SA, et al. Validation of Risk Equations for Complications of Type 2 Diabetes (RECODe) Using Individual Participant Data From Diverse Longitudinal Cohorts in the U.S. Diabetes Care. Mar 2018;41(3):586-595. doi:10.2337/dc17-2002
    118. Liao L-N, Liu C-S, Li C-I, et al. Three-year incidence of elevated albuminuria and associated factors in a population-based cohort: The Taichung Community Health Study. European Journal of Preventive Cardiology. 2020;22(6):788-797. doi:10.1177/2047487314537918
    119. Bae ES, Hur JY, Jang HS, Kim JS, Kang HS. Risk Factors of Microalbuminuria among Patients with Type 2 Diabetes Mellitus in Korea: A Cross-Sectional Study Based on 2019-2020 Korea National Health and Nutrition Examination Survey Data. Int J Environ Res Public Health. Feb 25 2023;20(5)doi:10.3390/ijerph20054169
    120. Gao Y, Shang Z, Nie S, et al. Clinical predictive factors and prediction models for end-stage renal disease in Chinese patients with type 2 diabetes mellitus. Clin Transl Med. Jul 2023;13(7):e1323. doi:10.1002/ctm2.1323
    121. Van Calster B, Steyerberg EW, Wynants L, van Smeden M. There is no such thing as a validated prediction model. BMC Med. Feb 24 2023;21(1):70. doi:10.1186/s12916-023-02779-w
    122. Nwosu UA, Darbinian JA, Chen KK, et al. Prevalence of Albuminuria Among Adults With Diabetes and Preserved Estimated Glomerular Filtration Rate by Race and Ethnicity. Diabetes Care. Mar 1 2023;46(3):e78-e80. doi:10.2337/dc22-1871
    123. Schiborn C, Schulze MB. Precision prognostics for the development of complications in diabetes. Diabetologia. Nov 2022;65(11):1867-1882. doi:10.1007/s00125-022-05731-4
    124. Chang CH, Shau WY, Jiang YD, et al. Type 2 diabetes prevalence and incidence among adults in Taiwan during 1999-2004: a national health insurance data set study. Diabet Med. Jun 2010;27(6):636-43. doi:10.1111/j.1464-5491.2010.03007.x
    125. Cabañas R, Ramírez E, Bellón T. Identifying the Culprit Drug in Severe Cutaneous Adverse Reactions (SCARs). Current Treatment Options in Allergy. 2021/09/01 2021;8(3):194-209. doi:10.1007/s40521-021-00291-1
    126. Sumida K, Nadkarni GN, Grams ME, et al. Conversion of Urine Protein-Creatinine Ratio or Urine Dipstick Protein to Urine Albumin-Creatinine Ratio for Use in Chronic Kidney Disease Screening and Prognosis : An Individual Participant-Based Meta-analysis. Ann Intern Med. Sep 15 2020;173(6):426-435. doi:10.7326/m20-0529

    無法下載圖示 校內:2028-08-14公開
    校外:2028-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE