簡易檢索 / 詳目顯示

研究生: 張晴晴
Chang, Ching-Ching
論文名稱: 供水渠道中2-MIB的來源貢獻分析
Analysis of 2-MIB sources in water supply channels
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 130
中文關鍵詞: 藍綠菌2-MIB質量平衡模型一維平流延散方程式藻毯
外文關鍵詞: Cyanobacteria, 2-methylisoborneol (2-MIB), Mass Balance Model, One Dimension Advection Dispersion Equation, Algal mat
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著氣候變遷與水體優養化問題日益嚴重,飲用水源中藍綠菌藻華的頻率與強度持續上升,導致產生如2-methylisoborneol (2-MIB)等臭味物質的風險大增。2-MIB為常見藻類代謝產物,具強烈土霉味,即使在極低濃度下亦會引起感官問題,對飲水接受度與公共信任造成影響。近年台灣多起臭味事件中皆偵測到2-MIB,尤其在灌溉渠道與水庫中,但其生成與傳輸機制仍未被完整掌握。
    本研究旨在分析供水渠道中藻毯對2-MIB濃度的貢獻,整合現地調查、實驗分析與數值模擬,利用質量平衡模型以探討2-MIB在渠道中的遷移行為與來源結構。研究場址選定高雄復興渠與桃園石門大圳兩地,並於高雄路竹淨水場採集藻毯樣本進行2-MIB與其合成基因(mibC)的萃取與分析。實驗結果顯示,藻毯中發現具2-MIB生產潛力的藍綠菌屬如Oscillatoria、Lyngbya與Pseudanabaena。機率分布分析顯示,在中位數情況下,每平方公分藻毯約含有2–55 ng 2-MIB,mibC基因量則為2×10⁴至10⁶ copies/cm²。
    模擬部分,應用一維平流延散方程式並結合Crank–Nicolson數值法,模擬不同生成與降解參數下2-MIB濃度的空間變化,並與實測數據比對。在復興渠中,2-MIB濃度分布平穩,推測主要來自上游輸入,無顯著本地生成;而在石門大圳中則於9–12公里處形成污染熱點,模擬結果亦支持該段底泥與藻毯累積為可能來源。透過本研究,除可量化藻毯在2-MIB污染事件中的角色,亦可作為影像辨識與水源預警系統的基礎,對水源管理與提升應變效率具有實質應用價值。

    This study conducted a comprehensive investigation into the sources of the odor compound 2-methylisoborneol (2-MIB) in water supply channels, with a particular focus on the contribution of algal mats. Through a combination of literature review, field sampling, laboratory analysis, and numerical modeling, both 2-MIB concentrations and the presence of its biosynthesis gene (mibC) were systematically analyzed. All collected algal mat samples tested positive for 2-MIB and mibC, with odor-producing cyanobacteria such as Oscillatoria, Lyngbya, and Pseudanabaena identified. Probability distribution analysis revealed that algal mats contained 2–55 ng/cm² of 2-MIB and 10⁴–10⁶ copies/cm² of mibC. When algal mat coverage exceeded 7.9% of the channel bed area, there was a 70% probability that 2-MIB concentrations in the water would exceed 10 ng/L, indicating a high risk of odor pollution.
    A one-dimensional advection–dispersion model, coupled with the Crank–Nicolson numerical method, was employed to simulate 2-MIB transport and transformation in two case studies: the Fuxing Canal and the Shimen Main Canal. In the Fuxing Canal, the estimated generation and degradation rates (13.6 ng/m³·s and 56.4 day⁻¹, respectively) reduced the root mean square error (RMSE) to 0.47 ng/L. For the Shimen Canal, based on August 2022 data from Taiwan Water Corporation, RMSE was reduced from 62.2 to 20.5 ng/L and from 27.5 to 10.9 ng/L after parameter calibration, successfully identifying pollution hotspots and reductions following dredging activities. Through the simplified advection model, although the RMSE value cannot be reduced, it can provide more stable estimates of the average generation and loss rates, as well as the final equilibrium concentration.
    This study established a quantitative relationship between algal mats and 2-MIB concentrations and demonstrated that combining numerical modeling with field data can effectively identify pollution hotspots and temporal trends. With the future integration of image recognition technology, this approach has the potential to support real-time early warning systems, enhancing the management of odor risks in drinking water sources.

    中文摘要 i Extended Abstract iii 誌謝 xi 目錄 xii 表目錄 xvi 圖目錄 xvii 符號表 xx 第一章 前言 1 1.1 研究源起與動機 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 藍綠菌介紹 3 2.2 臭味物質2-MIB 4 2.2.1 2-MIB來源 7 2.2.2 淨水程序中2-MIB的去除 11 2.3 藻毯(Algal mat)介紹 12 2.3.1 藻毯形成與維持的影響因子 14 2.3.2 藻毯對水體的影響 16 2.4 模擬模型介紹 18 2.5 一維平流延散模型 25 2.6 分子生物技術 29 2.6.1 即時定量聚合酶連鎖反應(Real-time Polymerase Chain Reaction, qPCR) 29 2.6.2 mibC基因與2-MIB臭味相關性 31 第三章 材料與方法 32 3.1 研究架構 32 3.2 研究場址 33 3.2.1 高雄復興渠 33 3.2.2 桃園石門大圳 35 3.2.3 高雄路竹淨水場 36 3.3 2-MIB分析方法 37 3.3.1 一般水樣分析方法 37 3.3.2 藻毯中2-MIB萃取 37 3.3.3 實驗試劑 38 3.3.4 實驗設備 38 3.3.5 實驗步驟 39 3.4 藻類計數 40 3.4.1 實驗試劑與設備 40 3.4.2 實驗步驟 41 3.5 DNA萃取 43 3.5.1 Plant Genomic DNA Extraction Mini Kit 43 3.5.2 FastDNATM SPIN Kit for Soil 45 3.6 即時聚合酶鏈鎖反應(Real-time polymerase chain reaction, qPCR) 47 3.6.1 設備與材料 47 3.6.2 實驗步驟 48 3.7 模型模擬 49 3.7.1 Crank-Nicolson數值方法解 49 3.7.2 簡易平流模型 54 第四章 結果與討論 56 4.1 藍綠菌藻毯與2-MIB質量及合成基因之關聯 56 4.1.1 藻毯萃取效率分析 57 4.1.2 2-MIB質量與mibC基因累積機率分布圖及應用 58 4.2 模型模擬 64 4.2.1 高雄復興渠 64 4.2.2 桃園石門大圳 73 第五章 結論與建議 84 5.1 結論 84 5.2 建議 86 第六章 附錄 87 6.1 渠道及藻毯2-MIB場址調查 87 6.1.1 水樣數據總表 88 6.1.2 藻毯數據總表 89 6.2 Python Code 93 參考文獻 99

    Bai, J., Xiao, R., Cui, B., Zhang, K., Wang, Q., Liu, X., Gao, H., & Huang, L. (2011). Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environmental Pollution, 159(3), 817-824. https://doi.org/https://doi.org/10.1016/j.envpol.2010.11.004
    Barsanti, L., & Gualtieri, P. (2022). Algae: anatomy, biochemistry, and biotechnology. CRC press.
    Bruchet, A., & Laine, J. (2005). Efficiency of membrane processes for taste and odor removal. Water Science and Technology, 51(6-7), 257-265.
    Bruder, S., Babbar-Sebens, M., Tedesco, L., & Soyeux, E. (2014). Use of fuzzy logic models for prediction of taste and odor compounds in algal bloom-affected inland water bodies. Environmental Monitoring and Assessment, 186(3), 1525-1545. https://doi.org/10.1007/s10661-013-3471-1
    Carpenter-Boggs, L., Loynachan, T., & Stahl, P. (1995). Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil biology and biochemistry, 27(11), 1445-1451.
    Carter, M. C., Weber Jr, W. J., & Olmstead, K. P. (1992). Effects of background dissolved organic matter on TCE adsorption by GAC. Journal‐American Water Works Association, 84(8), 81-91.
    Catherine, Q., Susanna, W., Isidora, E.-S., Mark, H., Aurélie, V., & Jean-François, H. (2013). A review of current knowledge on toxic benthic freshwater cyanobacteria – Ecology, toxin production and risk management. Water Research, 47(15), 5464-5479. https://doi.org/https://doi.org/10.1016/j.watres.2013.06.042
    CCALA, Culture collection of autotrophic organisms. https://ccala.butbn.cas.cz/en
    Chen, G., Dussert, B., & Suffet, I. (1997). Evaluation of granular activated carbons for removal of methylisoborneol to below odor threshold concentration in drinking water. Water Research, 31(5), 1155-1163.
    Chen, X., Li, Z., Xu, H., Qiu, L., Fan, L., Meng, S., Gao, Z., & Song, C. (2024). Regulation of salinity to inhibit 2-methylisoborneol and geosmin: Insights from spatial-scale research in coastal areas of China. Frontiers in Environmental Science, 12, 1433586.
    Chen, Y.-M., Hobson, P., Burch, M. D., & Lin, T.-F. (2010). In situ measurement of odor compound production by benthic cyanobacteria. Journal of Environmental Monitoring, 12(3), 769-775. https://pubs.rsc.org/en/content/articlepdf/2010/em/b918487b
    Chiu, Y.-T., Yen, H.-K., & Lin, T.-F. (2016). An alternative method to quantify 2-MIB producing cyanobacteria in drinking water reservoirs: Method development and field applications. Environmental Research, 151, 618-627. https://doi.org/https://doi.org/10.1016/j.envres.2016.08.034
    Chorus, I., & Welker, M. (2021). Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Taylor & Francis.
    Crank, J., & Nicolson, P. (1947). A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Mathematical proceedings of the Cambridge philosophical society,
    Cyanophyceae: Nostocales: Oscillatoriaceae. http://protist.i.hosei.ac.jp/PDB/Images/Prokaryotes/Oscillatoriaceae/Lyngbya/Lyngbya_3.html
    Devi, A., Chiu, Y.-T., Hsueh, H.-T., & Lin, T.-F. (2021). Quantitative PCR based detection system for cyanobacterial geosmin/2-methylisoborneol (2-MIB) events in drinking water sources: Current status and challenges. Water Research, 188, 116478. https://doi.org/https://doi.org/10.1016/j.watres.2020.116478
    Dzialowski, A. R., Smith, V. H., Huggins, D. G., deNoyelles, F., Lim, N.-C., Baker, D. S., & Beury, J. H. (2009). Development of predictive models for geosmin-related taste and odor in Kansas, USA, drinking water reservoirs. Water Research, 43(11), 2829-2840. https://doi.org/https://doi.org/10.1016/j.watres.2009.04.001
    ERDC, U. S. A. E. R. a. D. C. (2014). CE-QUAL-W2. https://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/554171/ce-qual-w2/
    FACHB, Freshwater Algae Culture Collection at the Institute of Hydrobiology. https://algae.ihb.ac.cn/
    Flynn, K. F., Chapra, S. C., & Suplee, M. W. (2013). Modeling the lateral variation of bottom-attached algae in rivers. Ecological Modelling, 267, 11-25. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2013.07.011
    Franklin, H. M., Podduturi, R., Jørgensen, N. O., Roberts, D. T., Schlüter, L., & Burford, M. A. (2023). Potential sources and producers of 2-methylisoborneol and geosmin in a river supplying a drinking water treatment plant. Chemical Engineering Journal Advances, 14, 100455.
    Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). New method for prediction of binary gas-phase diffusion coefficients. Industrial & Engineering Chemistry, 58(5), 18-27.
    Gaget, V., Almuhtaram, H., Kibuye, F., Hobson, P., Zamyadi, A., Wert, E., & Brookes, J. D. (2022). Benthic cyanobacteria: A utility-centred field study. Harmful Algae, 113, 102185. https://doi.org/https://doi.org/10.1016/j.hal.2022.102185
    Garstecki, B., & Wells, S. (2023). Modeling cyanotoxin production, fate, and transport in surface water bodies using CE-QUAL-W2. Environments, 10(7), 122.
    Gerald, C. F., & Wheatley, P. O. (2004). Applied Numerical Analysis. Pearson/Addison-Wesley. https://books.google.com.tw/books?id=BiOZQgAACAAJ
    Gerber, N. N. (1969). A volatile metabolite of actinomycetes, 2-methylisoborneol. J Antibiot (Tokyo), 22(10), 508-509. https://doi.org/10.7164/antibiotics.22.508
    Giglio, S., Chou, W., Ikeda, H., Cane, D., & Monis, P. (2011). Biosynthesis of 2-methylisoborneol in cyanobacteria. Environmental science & technology, 45(3), 992-998.
    Hayduk, W., & Laudie, H. (1974). Prediction of diffusion coefficients for nonelectrolytes in dilute aqueous solutions. AIChE Journal, 20(3), 611-615. https://doi.org/https://doi.org/10.1002/aic.690200329
    Ho, L., Dreyfus, J., Boyer, J., Lowe, T., Bustamante, H., Duker, P., Meli, T., & Newcombe, G. (2012). Fate of cyanobacteria and their metabolites during water treatment sludge management processes. Science of the Total Environment, 424, 232-238. https://doi.org/https://doi.org/10.1016/j.scitotenv.2012.02.025
    Johnson, A. C., & and Castenholz, R. W. (2000). Preliminary Observations of the Benthic Cyanobacteria of Waldo Lake and Their Potential Contribution to Lake Productivity. Lake and Reservoir Management, 16(1-2), 85-90. https://doi.org/10.1080/07438140009354225
    Jüttner, F., & Watson, S. B. (2007). Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl Environ Microbiol, 73(14), 4395-4406. https://doi.org/10.1128/aem.02250-06
    Kang, M., Kim, D.-W., Park, M., Kim, K., & Min, J.-H. (2023). Managing the Taste and Odor Compound 2-MIB in a River-Reservoir System, South Korea. Water, 15(23), 4107.
    Khalilzadeh Poshtegal, M., & Mirbagheri, S. A. (2023). Simulation and modelling of heavy metals and water quality parameters in the river. Scientific Reports, 13(1), 3020. https://doi.org/10.1038/s41598-023-29878-1
    Kim, J., Lee, T., & Seo, D. (2017). Algal bloom prediction of the lower Han River, Korea using the EFDC hydrodynamic and water quality model. Ecological Modelling, 366, 27-36. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2017.10.015
    Kim, T.-K., Moon, B.-R., Kim, T., Kim, M.-K., & Zoh, K.-D. (2016). Degradation mechanisms of geosmin and 2-MIB during UV photolysis and UV/chlorine reactions. Chemosphere, 162, 157-164.
    Koester, K. (2011). Measuring and modeling geosmin removal from Horsetooth Reservoir water by powdered activated carbon for selected contact times. Masters Abstracts International,
    Komatsu, M., Tsuda, M., Ōmura, S., Oikawa, H., & Ikeda, H. (2008). Identification and functional analysis of genes controlling biosynthesis of 2-methylisoborneol. Proceedings of the National Academy of Sciences, 105(21), 7422-7427.
    Lalezary, S., Pirbazari, M., & McGuire, M. J. (1986). Oxidation of five earthy‐musty taste and odor compounds. Journal‐American Water Works Association, 78(3), 62-69.
    Li, Z., Hobson, P., An, W., Burch, M. D., House, J., & Yang, M. (2012). Earthy odor compounds production and loss in three cyanobacterial cultures. Water Research, 46(16), 5165-5173.
    Lin, T.-F., Watson, S., & Suffet, I. M. (2018). Taste and odour in source and drinking water: Causes, controls, and consequences. IWA Publishing.
    Lin, T.-F., Wong, J.-Y., & Kao, H.-P. (2002). Correlation of musty odor and 2-MIB in two drinking water treatment plants in South Taiwan. Science of the Total Environment, 289(1-3), 225-235.
    Lin, T., Watson, S., Devesa, R., Bruchet, A., Burlingam, G., Dietrich, A., & Suffet, M. (2012). Off-flavours in the aquatic environment: a global issue. Global trends & challenges in water science, research and management-A compendium of hot topics and features from IWA Specialist Groups, 58-63.
    Liu, Z., Lin, T.-F., Burch, M., Lin, T., Watson, S., Dietrich, A., & Suffet, I. (2019). Management of T&O in source water. In (pp. 211-233): IWA Publishing, London, UK.
    Lloyd, S. W., Lea, J. M., Zimba, P. V., & Grimm, C. C. (1998). Rapid analysis of geosmin and 2-methylisoborneol in water using solid phase micro extraction procedures. Water Research, 32(7), 2140-2146.
    Ma, L., Wang, C., Li, H., Peng, F., & Yang, Z. (2018). Degradation of geosmin and 2-methylisoborneol in water with UV/chlorine: Influencing factors, reactive species, and possible pathways. Chemosphere, 211, 1166-1175.
    Medsker, L. L., Jenkins, D., Thomas, J. F., & Koch, C. (1969). Odorous compounds in natural waters. 2-Exo-hydroxy-2-methylbornane, the major odorous compound produced by several actinomycetes. Environmental science & technology, 3(5), 476-477.
    Mollocana Lara, J. G., Quezada Espinosa, E. S., & Vizcaino Angamarca, J. M. (2021). Prediction of trophic state of San Marcos Lagoon based on aquatox eutrophication model. Innovation and Research: A Driving Force for Socio-Econo-Technological Development 1st,
    Mustapha, S., Tijani, J., Ndamitso, M., Abdulkareem, A., Shuaib, D., & Mohammed, A. (2021). A critical review on geosmin and 2-methylisoborneol in water: sources, effects, detection, and removal techniques. Environmental Monitoring and Assessment, 193, 1-34.
    Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C., & Dittmann, E. (2013). Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environmental microbiology, 15(5), 1239-1253.
    Paerl, H. W., & Paul, V. J. (2012). Climate change: Links to global expansion of harmful cyanobacteria. Water Research, 46(5), 1349-1363. https://doi.org/https://doi.org/10.1016/j.watres.2011.08.002
    Pang, M., Song, W., Liu, Y., & Pang, Y. (2021). Simulation of the Parameters Effecting the Water Quality Evolution of Xuanwu Lake, China. International Journal of Environmental Research and Public Health, 18(11), 5757. https://www.mdpi.com/1660-4601/18/11/5757
    Persson, P.-E. (1980). Sensory properties and analysis of two muddy odour compounds, geosmin and 2-methylisoborneol, in water and fish. Water Research, 14(8), 1113-1118. https://doi.org/https://doi.org/10.1016/0043-1354(80)90161-X
    Persson, P. (1974). On flavour tainting of fish, with special reference to the Oulu sea area (Bothnian Bay). Rep. Nat. Bd Wat. Finl, 65, 1-262.
    Piriou, P., Devesa, R., De Lalande, M., & Glucina, K. (2009). European reassessment of MIB and geosmin perception in drinking water. Journal of Water Supply: Research and Technology—AQUA, 58(8), 532-538.
    Power, M. E. (1990). Benthic Turfs vs Floating Mats of Algae in River Food Webs. Oikos, 58(1), 67-79. https://doi.org/10.2307/3565362
    Radha, R., Singh, R. K., & Singh, M. K. (2022). Contaminant transport analysis under non-linear sorption in a heterogeneous groundwater system. Applied Mathematics in Science and Engineering, 30(1), 736-761.
    Rehakova, K., Čapková, K., Konopáčová, E., Nedoma, J., Mareš, J., Bešta, T., Štenclová, L., & Kust, A. (2023). Unveiling the ecological significance of algal mats and meadows: Insights into phosphorus cycling and primary production of benthic algae in post-mining lakes. ARPHA Conference Abstracts,
    Sahay, R. R. (2013). Predicting Longitudinal Dispersion Coefficients in Sinuous Rivers by Genetic Algorithm. Journal of Hydrology and Hydromechanics, 61(3), 214-221. https://doi.org/https://doi.org/10.2478/johh-2013-0028
    Schirrmeister, B. E., Gugger, M., & Donoghue, P. C. (2015). Cyanobacteria and the Great Oxidation Event: evidence from genes and fossils. Palaeontology, 58(5), 769-785. https://doi.org/10.1111/pala.12178
    Sharma, D., & Kansal, A. (2013). Assessment of river quality models: a review. Reviews in Environmental Science and Bio/Technology, 12, 285-311.
    Streeter, H. W., & Phelps, E. B. (1925). A study of the pollution and natural purification of the Ohio River. United States Public Health Service.
    Su, M., Suruzzaman, M., Zhu, Y., Lu, J., Yu, J., Zhang, Y., & Yang, M. (2021). Ecological niche and in-situ control of MIB producers in source water. Journal of Environmental Sciences, 110, 119-128. https://www.sciencedirect.com/science/article/pii/S100107422100111X?via%3Dihub
    Suffet, I., Braithwaite, S., Zhou, Y., Bruchet, A., Lin, T.-F., Watson, S., & Dietrich, A. M. (2019). The drinking water taste-and-odour wheel after 30 years. In: IWA Publishing, London, UK.
    Suffet, I. H., Corado, A., Chou, D., McGuire, M. J., & Butterworth, S. (1996). AWWA taste and odor survey. Journal AWWA, 88(4), 168-180. https://doi.org/https://doi.org/10.1002/j.1551-8833.1996.tb06542.x
    Suffet, I. H., Khiari, D., & Bruchet, A. (1999). The drinking water taste and odor wheel for the millennium: Beyond geosmin and 2-methylisoborneol. Water Science and Technology, 40(6), 1-13. https://doi.org/https://doi.org/10.1016/S0273-1223(99)00531-4
    Tabachek, J.-A. L., & Yurkowski, M. (1976). Isolation and identification of blue-green algae producing muddy odor metabolites, geosmin, and 2-methylisoborneol, in saline lakes in Manitoba. Journal of the Fisheries Board of Canada, 33(1), 25-35.
    Taylor, G. I. (1953). Dispersion of soluble matter in solvent flowing slowly through a tube. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 219(1137), 186-203.
    Thaysen, A. (1936). The origin of an earthy or muddy taint in fish: I. The nature and isolation of the taint. Annals of Applied Biology, 23(1), 99-104.
    Thermo Fisher Scientific Inc Real-Time PCR (qPCR) Learning Center. https://www.thermofisher.com/tw/zt/home/life-science/pcr/real-time-pcr/real-time-pcr-learning-center.html
    Umeorah, N., & Mashele, P. (2019). A Crank-Nicolson finite difference approach on the numerical estimation of rebate barrier option prices. Cogent Economics & Finance.
    Wang, Q., Li, S., Jia, P., Qi, C., & Ding, F. (2013). A review of surface water quality models. The Scientific World Journal, 2013(1), 231768.
    Watson, S. B., Whitton, B. A., Higgins, S. N., Paerl, H. W., Brooks, B. W., & Wehr, J. D. (2015). Chapter 20 - Harmful Algal Blooms. In J. D. Wehr, R. G. Sheath, & J. P. Kociolek (Eds.), Freshwater Algae of North America (Second Edition) (pp. 873-920). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-385876-4.00020-7
    Westerhoff, P., Rodriguez-Hernandez, M., Baker, L., & Sommerfeld, M. (2005). Seasonal occurrence and degradation of 2-methylisoborneol in water supply reservoirs. Water Research, 39(20), 4899-4912.
    Whipple, G. C. (1927). The Microscopy of Drinking Water. In: John Wiley & Sons.
    Whitton, B., & Potts, M. (2002). The Ecology of Cyanobacteria: Their Diversity in Time and Space. https://doi.org/10.1007/0-306-46855-7
    Whitton, B. A., & Potts, M. (2007). The ecology of cyanobacteria: their diversity in time and space. Springer Science & Business Media.
    Wood, S. A., Kelly, L., Bouma-Gregson, K., Humbert, J. F., Laughinghouse IV, H. D., Lazorchak, J., McAllister, T., McQueen, A., Pokrzywinski, K., & Puddick, J. (2020). Toxic benthic freshwater cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and improving monitoring and mitigation. Freshwater Biology, 65(10), 1824. https://pmc.ncbi.nlm.nih.gov/articles/PMC8715960/
    Wool, T. A., Ambrose Jr, R., & Martin, J. (2015). WASP7 Multiple Algae-Model Theory and User’s Guid. US EPA, Region, 4.
    World Meteorological Organization, W. (2023). State of Global Water Resources report 2022. https://library.wmo.int/idurl/4/68473
    Yih, S. M., & Davidson, B. (1975). Identification in nonlinear, distributed parameter water quality models. Water Resources Research, 11(5), 693-704.
    Young, W., Horth, H., Crane, R., Ogden, T., & Arnott, M. (1996). Taste and odour threshold concentrations of potential potable water contaminants. Water Research, 30(2), 331-340.
    中宇環保工程股份有限公司. 台灣自來水公司路竹淨水場統包工程. https://www.ecotek.com.tw/TWCLWTP/
    交通部. (2018). 公路排水設計規範. In.
    李, 紹. (2017). 利用生物降解水中 MIB 可行性之研究: 降解菌分離及降解效率比較
    林, 彥., 鐘, 錦., 李, 藴., & 陳, 文. (2023). 石門淨水場2-MIB臭味事件處置之探討. 中華民國自來水協會會刊第42卷第4期(168)
    林, 財., 顏, 宏., 林, 秀., 邱, 宜., & 李, 紹. (2016). 公共給水有害藻類及代謝物監測與緊急應變處理技術之研究.
    高雄市政府. 復興渠圖資. https://orgws.kcg.gov.tw/001/KcgOrgUploadFiles/10/relfile/7312/167295/299b84da-effa-40ff-a4a9-6843259d1c9d.pdf
    陳, 怡. (2023). 以分子生物技術分析底泥中產2-MIB藍綠菌及其菌種組成之研究 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/2thehz
    陳, 意., 張, 俊., 林, 信., & 孫, 明. (2001). 不同材質灌溉排水渠道之研究. 水土保持學報, 67-80.
    童, 淑., 徐, 孟., 楊, 士., & 林, 財. (2002). 利用氧化劑去除原水中2-MIB之研究. 第二十七屆廢水處理技術研討會論文集.
    農業部農田水利署石門管理處. (2023). 石門管理處灌區環境. https://www.iasme.nat.gov.tw/about/Articles?a=10882
    農業部農田水利署石門管理處. (2024). 石門大圳水位自動測報系統. https://www.iasme.nat.gov.tw/operations/Articles?a=10883
    農業部農田水利署高雄管理處. (2023). 岡山工作站. https://www.iakhs.nat.gov.tw/about/WorkStationPage?a=10611&id=260&q=
    趙, 怡. (2024). 渠道中藻霉味物質質量平衡模型 國立成功大學]. 臺灣博碩士論文知識加值系統. 台南市. https://hdl.handle.net/11296/99m89u
    環境部. (2011). 環境影響評估河川水質模式評估技術規範. In (Vol. 環署粽字第1000104517B號令, pp. 91).
    謝, 汶. (2013). 2-MIB 與 Geosmin 在土壤-水系統分佈及淨水程序之處理研究

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE