| 研究生: |
曹俊平 Cao, Jun-Ping |
|---|---|
| 論文名稱: |
結合離散模擬模式及模糊多屬性決策方法求解急診室導入單元工程佈置問題 The Use of Discrete Event Simulation and Fuzzy Multiple Attribute Decision-making Method in Solving Emergency Department Cellular Layout Design Problem |
| 指導教授: |
楊大和
Yang, Taho |
| 共同指導教授: |
施欣怡
Shih, Hsin-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造資訊與系統研究所 Institute of Manufacturing Information and Systems |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 醫學中心急診部 、單元工程 、模糊多屬性決策 、離散模擬模式 、價值流圖 |
| 外文關鍵詞: | Cell Manufacturing, Discrete-event Simulation, Lean Management, Lean Healthcare, Value Stream Mapping |
| 相關次數: | 點閱:118 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來急診的服務量日漸增多,為了使病患能得到妥善的治療,急診醫療團隊皆積極地開發出理想的檢傷分類系統以因應時勢。然而案例急診室內科輕症病患仍舊約有四成五的比例超出建議的候診時間,能夠縮減病患等候時間、病患滯留時間進而降低超出建議的候診時間之比例即為本研究所關切的議題。
以南部醫學中心急診部為實例,為期五個月的實際觀察,詳細了解急診室實際運作流程。首先針對急診流程繪製價值流圖(Value Stream Mapping,VSM)檢視現況並找出浪費之所在,作為改善之契機,本研究利用單元工程的概念應用於案例急診部,產生出適合且實務可行的四個設施佈置方案,四個改善方案相對於現況均有改善成效,其中滯留時間改善幅度20%至22%之間、等待時間為11%至15%之間及服務水準為17%至24%之間,改善方案同時也改變看診地點,提升病患的隱私性以及護理人員效率。
而設施規劃考量為了考慮周全性,除了考慮以上之定量指標,本研究與使用者討論出四個代表性的定性指標,透過各層級評選人為改善方案評分,其中評選人包含精實專家、急診室主任、資深醫師和護理長等等七位成員與先前模擬實驗結果產生的定量指標以模糊多屬性決策分析程序進行方案評選,找出評選最佳佈置方案為方案4。
方案4在綜合評比中得到最評價且於定量五項評比中皆是最高分,但在定性的改善難易度的指標中被認定為最難,雖目前無法達成,供使用者可作為未來改善目標。
First, the study applies the Value Stream Mapping (VSM) to find out wastes among the process. From VSM, we can discover potential improvement opportunities in this emergency department system. Second, based on lean principles, we design four cell layouts to shorten the distance of movement for medical staffs. In order to increase the possibility of changing the layout, we discuss with users in the design layouts process for several times.
Third, for the purpose of evaluating layout well, we adopt multiple performance indexes, including quantitative indexes and qualitative indexes. The use of a discrete-event simulation method can collect a variety of quantitative performance measures, such as moving distance and total waiting time. On the other hand, fuzzy multiple attribute decision making method (FMADM) can collect a variety of qualitative performance measures, such as difficulty of changing layout and flow efficiency. Finally, we follow the proposed FMADM methodology to solve the case-study ED and put appropriate alternatives to user in different situations. These suggestions can provide facility designers with some findings and results.
行政院衛生署,民104,103年度衛生統計動向,
http://www.mohw.gov.tw/CHT/DOS/DisplayStatisticFile.aspx?d=53361&s=1&f=20463(1/20,民105取得)。
柳生俊二,民97,從單元細胞開始的同期生產方式,財團法人中衛發展中心,台北.
楊大和、謝瓊嬉,民97,電子業向汽車業取經-精實生產在TFT-LCD產業成功的應用,品質月刊,民國97年,9月。
闕頌廉,民90,應用模糊學,科技圖書公司,台北。
麥克.魯斯、李克.哈理斯,李朝森、李兆華譯,2007,建構連續流:管理者、工程師與製造團隊的行動指南,財團法人中衛發展中心,台北。
麥克.魯斯、約翰.舒克,趙克強譯,2006,學習觀察 : 增加價值、消除浪費的價值流圖,財團法人中衛發展中心,台北。
Arbune, A., Wackerbarth, S., Allison, P., & Conigliaro, J, 2014. Improvement through
small cycles of change: lessons from an Academic Medical Center emergency
department. Journal for Healthcare Quality.
Baker, M. and Taylor, I., 2009. Making Hospitals Work: How to Improve Patient Care while Saving Everyone's Time and Hospitals' Resources, Lean Enterprise Academy Limited, Goodrich, UK.
Banks, J., Carson, J.S., Nelson, B.L., and Nicol, D.M., 2000. Discrete-Event System Simulation, Prentice Hall, New Jersey.
Bellman, R.E. and Zadeh, L.A., 1970, Decision-making in a fuzzy environment, Management Science, 17 (4), 141-164.
Chou, S.Y., Chang, Y.H., and Shen, C.Y., 2008, A fuzzy simple additive weighting system under group decision-making for facility location selection with objective/subjective attributes, European Journal of Operational Research, 189 (1), 132-145.
Graban, M., 2009. Lean Hospitals: Improving Quality, Patient Safety, and Employee Satisfaction, CRC Press, Boca Raton.
Heizer, J.H. and Render, B., 2006. Operations Management, 8th ed., Prentice Hall, New Jersey.
Irani, S.A., 1999. Handbook of Cellular Manufacturing Systems, John Wiley and Sons, New York.
Kenney, C. (2012). Transforming health care: Virginia Mason Medical Center's pursuit of the perfect patient experience. CRC Press.
Kelton, W.D., Sadowski, R.P. and Swets, N.B., 2014, Simulation with Arena, 6th edition, McGraw-Hill Education, New York.
Khurma, N., Bacioiu, G.M., and Pasek, Z.J., 2008. Simulation-based verification of lean improvement for emergency room process. Proceedings of the 2008 Winter Simulation Conference, 1490-1499.
Liker, J.K., 2004. The Toyota Way: 14 Management Principles from the World's Greatest Manufacturer, McGraw Hill, New York.
Lu, J.C., Yang, T., and Wang, C.Y., 2011. A lean pull system design analysed by value stream mapping and multiple criteria decision-making method under demand uncertainty. International Journal of Computer Integrated Manufacturing, 24 (3), 211-228.
Monden, Y., 2012. Toyota Production System: an Integrated Approach to Just-in-Time, 4th ed., CRC Press, Boca Raton.
Ng, D., Vail, G., Thomas, S., and Schmidt, N., 2010. Applying the lean principles of the Toyota production system to reduce wait times in the emergency department. Canadian Journal of Emergency Medicine, 12 (1), 50-57.
Ohno, T., 1988, Toyota Production System: Beyond Large-Scale Production, Productivity Press, Portland.
Olshaker, J.S., 2009. Managing emergency department overcrowding. Emergency Medicine Clinics of North America, 27 (4), 593-603.
Pattanaik, L.N. and Sharma, B.P., 2009. Implementing lean manufacturing with cellular layout: A case study. International Journal of Advanced Manufacturing Technology, 42 (7), 772-779.
Rother, M. and Harris, R., 2001. Creating Continuous Flow, Lean Enterprise Institute, New York.
Schull, M.J., Morrison, L.J., Vermeulen, M., and Redelmeier, D.A., 2003. Emergency department overcrowding and ambulance transport delays for patients with chest pain. Canadian Medical Association Journal, 168 (3), 277-283.
Shah, R. and Ward, P.T., 2007. Defining and developing measures of lean production. Journal of Operations Management, 25 (4), 785-805.
Tompkins, J.A., 2003. Facilities Planning, 3rd ed., J. Wiley, New Jersey.
Wang, T. K., Yang, T., Yang, C. Y., & Chan, F. T. (2015). Lean principles and simulation optimization for emergency department layout design. Industrial Management & Data Systems, 115(4), 678-699.
Wang, T. K., Chan, F. T. S., & Yang, T. (2014). The integration of group technology and simulation optimization to solve the flow shop with highly variable cycle time process: a surgery scheduling case study. Mathematical Problems in Engineering, 2014.
Wang, Y.M. and Elhag, T.M.S., 2007, A fuzzy group decision making approach for bridge risk assessment, Computers and Industrial Engineering, 53 (1), 137-148.
White, B. A., Chang, Y., Grabowski, B. G., & Brown, D. F. (2014). Using lean-based systems engineering to increase capacity in the emergency department. Western Journal of Emergency Medicine, 15(7), 770.
Womack, J.P., Byrne, A.P., Fiume, O.J., Kaplan, G.S., and Toussaint, J., 2005. Going lean in health care. Institute for Healthcare Improvement.
Womack, J.P. and Jones, D.T., 2003. Lean Thinking: Banish Waste and Create Wealth in Your Corporation, Simon & Schuster, New York.
Womack, J.P. and Jones, D.T., 2005. Lean Solutions: How Companies and Customers Can Create Value and Wealth Together, Free Press, New York
Yager, R.R., 1980, On a general class of fuzzy connectives, Fuzzy Sets and Systems, 4 (3), 235-343.
Yang, T., Chang, Y. C., & Yang, Y. H. (2012). Fuzzy multiple attribute decision-making method for a large 300-mm fab layout design. International Journal of Production Research, 50 (1), 119-132.
Yang, T., Kuo, Y., & Chang, I. (2004). Tabu-search simulation optimization approach for flow-shop scheduling with multiple processors—a case study. International Journal of Production Research, 42 (19), 4015-4030.
Yang, T., Fu, H.-P., and Yang, K.-Y., 2007. An evolutionary-simulation approach for the optimization of multi-constant work-in-process strategy--A case study. International Journal of Production Economics, 107 (1), 104-114.
Yang, T. and Hsieh, C.H., 2009, Six-Sigma project selection using national quality award criteria and Delphi fuzzy multiple criteria decision-making method, Expert Systems with Applications, 36 (4), 7594-7603.
Yang, T. and Hung, C.C., 2007, Multiple-attribute decision making methods for plant layout design problem, Robotics and Computer Integrated Manufacturing, 23 (1), 126-137.
Yang, T. and Lu, J.C., 2011. The use of a multiple attribute decision-making method and value stream mapping in solving the pacemaker location problem. International Journal of Production Research, 49 (10), 2793-2817.
Yang, T., Wang, T. K., Li, V. C., & Su, C. L. (2015). The Optimization of Total Laboratory Automation by Simulation of a Pull-Strategy. Journal of medical systems, 39 (1), 1-12.
Zeng, J., An, M., and Smith, N.J., 2007, Application of a fuzzy based decision making methodology to construction project risk assessment, International Journal of Project Management, 25 (6), 589-600.
Zimmermann, H.J., 1987, Fuzzy Sets, Decision Making, and Expert Systems, Kluwer Academic Publishers, Boston.