簡易檢索 / 詳目顯示

研究生: 謝佑賢
Hsieh, Yu-Hsien
論文名稱: 旋轉穿刺曲面針的製造與生物力學性能評估
Manufacturing and Biomechanical Evaluation of Curved Surface Needle for Rotary Needle Insertion
指導教授: 林啟倫
Lin, Chi-Lun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 118
中文關鍵詞: 針頭製造針頭幾何組織切削組織損傷數位影像相關法
外文關鍵詞: Needle manufacturing, Needle geometry, Tissue cutting, Tissue damage, Digital image correlation
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 旋轉切削法 常被應用於醫療領域中,如真空輔助切片取樣檢查等微創手術。過去文獻表示,凸曲面針適合旋轉穿刺。然而,有研究指出,雖然旋轉穿刺能降低切削力,但也可能造成組織破壞,導致併發症如出血、血腫等的發生。雙向旋轉的運動行為可能可以減少針尖處軟組織纏繞所造成的破壞,但過去研究中尚未深入探討。因此,本研究針對凸雙曲面針的新式設計,提出此支針頭的製程,應用於設計評估,藉此評估此支針頭 在單雙向旋轉穿刺時的力學性能,並探討針尖幾何和運動參數對於軟組織破壞的影響。希冀能改善臨床上的併發症問題,降低旋轉穿刺時造成的損傷。
    本研究首先提出一套以研磨和放電加工方式的曲面針製造方法,目的在於研發能夠在一般實驗室環境中進行製造的方法,確保針頭品質的一致性及實驗的穩定性。針對自製針頭,以田口方法評估不同參數對於徑向截面上的組織損傷的影響,並且與雙向旋轉的穿刺運動模式進行比較和評估。研究中也比較了不同針頭類型,包括凸雙曲面針、凸單曲面針和平頭針的性能,評估各針頭進行單向及雙向旋轉時,對徑向截面造成的組織損傷及軸向穿刺力的表現,提供臨床上穿刺取樣的參數參考。
    本研究所提出的曲面針製造流程,其導角角度與理論值的誤差小於14.39%,且針尖的不同幾何特徵和斜邊長度與理論值之間誤差皆小於1%,拍攝的針尖幾何輪廓比對理論曲線高度吻合,顯示此套方法能製作出所需的針尖幾何,並具有卓越的加工精度。 另外,本研究發現凸雙曲面針適合單向旋轉穿刺,與其他針頭相比具有最優異的性能,能造成最小的穿刺力與組織損傷。對於徑向截面的組織損傷,本研究建議的最佳參數組合為無導角、K=0.4、軸向速度1 mm/s、轉速比5。

    Rotational insertion are commonly used in the medical field. Previous study has shown that concave-curved needles are suitable for rotational cutting. However, rotational insertion may result in tissue damage, leading to complications such as bleeding and hematoma. The purpose of this study is to develop a manufacturing process for curved needles in a laboratory setting for design evaluation. It evaluates the unexplored performance aspects of double concave-curved needles during unidirectional and bidirectional rotation during needle insertion. The study examines how needle tip geometry and motion parameters affect tissue damage in radial cross-section and axial cutting forces. In this research, a process for manufacturing concave-curved needles using grinding and electrical discharge machining is proposed. The Taguchi method is used to evaluate the effect of various parameters on cutting force and tissue damage. Performance comparisons are made among different needle types, including double concave-curved needles, single concave-curved needles, and blunt needles. The results indicate that the manufacturing process can successfully produce double concave-curved needles and previously unproduced single concave-curved needles with high precision machining capabilities, with theoretical errors as low as 1%. In terms of performance comparison, double concave-curved needles excel in unidirectional rotational insertion, generating minimal cutting force and tissue damage. For radial tissue damage, the recommended optimal parameter combination is unsharpened, K=0.4, v_a=1 mm/s, and S=5. The findings of this study will contribute to needle manufacturing, needle design and parameter selection for design evaluation and improved sampling quality with minimal tissue damage.

    摘要 i Extended Abstract ii 目錄 xiii 誌謝 xvi 表目錄 xvii 圖目錄 xx 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 4 1.2.1 真空輔助切片 (VAB) 4 1.2.2 軟組織假體 6 1.2.3 針頭穿刺力學分析 7 1.2.4 針頭針尖幾何 9 1.2.5 針頭切削參數 11 1.2.6 針頭對組織破壞與評估 11 1.2.7 針頭之製造與加工 13 1.2.8 系統文獻回顧(Systematic Review, SR) 14 1.3 研究目的 18 第二章 研究方法 20 2.1 本章介紹 20 2.2 針頭設計參數 21 2.2.1 特徵角幾何參數 21 2.2.2 曲面針之針尖設計 25 2.2.3 轉速比與切壓比 28 2.3 曲面針之製造 29 2.3.1 使用儀器 29 2.3.2 製作流程 35 2.3.3 幾何驗證 36 2.4 軟組織假體 37 2.5 自製針頭穿刺實驗 39 2.5.1 使用儀器 39 2.5.2 實驗設計 39 2.6 凸雙曲面針旋轉穿刺實驗 40 2.6.1 使用儀器 40 2.6.2 DIC簡介 40 2.6.3 田口方法簡介 41 2.6.4 實驗設計 41 2.7 與他種針頭旋轉穿刺比較實驗 44 第三章 結果 45 3.1 表面粗糙度量測 45 3.2 針頭針尖量測 46 3.3 自製針頭穿刺檢定 48 3.4 凸雙曲面針旋轉穿刺 50 3.4.1 徑向截面單向旋轉穿刺實驗 50 3.4.2 軸向截面雙向旋轉穿刺實驗 58 3.4.3 徑向截面雙向旋轉穿刺實驗 62 3.5 與其他針頭旋轉穿刺比較 64 3.6 最佳組合推定值與實驗值比較 69 第四章 討論 72 4.1 曲面針之製造 72 4.1.1 表面粗糙度量測結果 72 4.1.2 曲面針的量測結果與誤差 74 4.1.3 自製針頭穿刺檢定實驗 76 4.1.4 綜合討論 78 4.2 凸雙曲面針旋轉穿刺實驗 80 4.2.1 徑向截面單向旋轉穿刺實驗 81 4.2.2 軸向與徑向截面雙向旋轉穿刺實驗 83 4.2.3 與其他針頭旋轉穿刺比較 83 4.2.4 綜合討論 87 第五章 結論 90 5.1 結論 90 5.2 未來方向 91 參考文獻 93 附錄A 100 附錄B 112 附錄C 116

    [1] National Cancer Institute (NCI). "Breast." NCI Dictionary of Cancer Terms.
    [2] 國民健康署 (2022)。乳癌防治。
    [3] 陳啟明 (2021)。一本讀通乳癌。臺北市:天下生活。
    [4] E. A. M. O'Flynn, A. R. M. Wilson et al. (2010). Image-guided breast biopsy: state-of-the-art. Clinical Radiology 65(4):259-270.
    [5] U. Bick, R. M. Trimboli et al. (2020). Image-guided breast biopsy and localisation: recommendations for information to women and referring physicians by the European Society of Breast Imaging. Insights into Imaging 11(1):12.
    [6] J. Z. Moore, P. W. McLaughlin et al. (2012). Novel needle cutting edge geometry for end-cut biopsy. Medical Physics 39(1):99-108.
    [7] C. L. Lin, Y. M. Huang et al. (2023). A Novel Biopsy Needle with Double Concave-Curved Cutting Edges. IRBM 44(5):100783.
    [8] S. M. Fu, X. M. Wang et al. (2015). Effectiveness of hemostasis with Foley catheter after vacuum-assisted breast biopsy. J Thorac Dis 7(7):1213-20.
    [9] S. Nakano, Y. Imawari et al. (2018). Differentiating vacuum-assisted breast biopsy from core needle biopsy: Is it necessary? The British Journal of Radiology 91(1092):20180250.
    [10] V. Ames and P. D. Britton (2011). Stereotactically guided breast biopsy: a review. Insights into Imaging 2(2):171-176.
    [11] B. D. Fornage (2020). Vacuum-Assisted Biopsy. Interventional Ultrasound of the Breast: From Biopsy to Ablation, Springer International Publishing: 317-325.
    [12] A. Hitchcock, C. M. Hunt et al. (1991). A One Year Audit of Fine Needle Aspiration Cytology For the Pre-Operative Diagnosis of Breast Disease. Cytopathology 2(4):167-176.
    [13] I. A. Park and E. K. Ham (1997). Fine needle aspiration cytology of palpable breast lesions: histologic subtype in false negative cases. Acta cytologica 41(4):1131-1138.
    [14] L. Liberman, J. H. Smolkin et al. (1998). Calcification retrieval at stereotactic, 11-gauge, directional, vacuum-assisted breast biopsy. Radiology 208(1):251-260.
    [15] L. E. Philpotts, N. A. Shaheen et al. (1999). Comparison of rebiopsy rates after stereotactic core needle biopsy of the breast with 11-gauge vacuum suction probe versus 14-gauge needle and automatic gun. American Journal of Roentgenology 172(3):683-687.
    [16] F. Zagouri, A. Gounaris et al. (2011). Vacuum-assisted Breast Biopsy: More Cores, More Hematomas? In Vivo 25(4):703-705.
    [17] G. C. Zografos, F. Zagouri et al. (2008). Hematoma after vacuum-assisted breast biopsy: a preventable condition? Acta Radiol 49(3):277; reply 277.
    [18] P. Y. Wu, H. Kahraman et al. (2017). Development of Aspiration-Assisted End-Cut Coaxial Biopsy Needles. Journal of Medical Devices 11(1).
    [19] A. P. Lourenco, M. B. Mainiero et al. (2007). Stereotactic breast biopsy: comparison of histologic underestimation rates with 11- and 9-gauge vacuum-assisted breast biopsy. AJR Am J Roentgenol 189(5):W275-9.
    [20] P. R. Eby, J. E. Ochsner et al. (2009). Frequency and Upgrade Rates of Atypical Ductal Hyperplasia Diagnosed at Stereotactic Vacuum-Assisted Breast Biopsy: 9-Versus 11-Gauge. American Journal of Roentgenology 192(1):229-234.
    [21] H. Preibsch, A. Baur et al. (2015). Vacuum-assisted breast biopsy with 7-gauge, 8-gauge, 9-gauge, 10-gauge, and 11-gauge needles: how many specimens are necessary? Acta Radiologica 56(9):1078-1084.
    [22] S. P. Povoski and R. E. Jimenez (2007). A comprehensive evaluation of the 8-gauge vacuum-assisted Mammotome® system for ultrasound-guided diagnostic biopsy and selective excision of breast lesions. World Journal of Surgical Oncology 5(1):83.
    [23] S. Venkataraman, V. Dialani et al. (2012). Stereotactic core biopsy: Comparison of 11 gauge with 8 gauge vacuum assisted breast biopsy. European Journal of Radiology 81(10):2613-2619.
    [24] F. Zagouri, T. N. Sergentanis et al. (2010). Volume of blood suctioned during vacuum-assisted breast biopsy predicts later hematoma formation. BMC Research Notes 3(1):70.
    [25] M. A. Meltsner, N. J. Ferrier et al. (2007). Observations on rotating needle insertions using a brachytherapy robot. Physics in Medicine & Biology 52(19):6027.
    [26] T. K. Podder, L. Liao et al. (2006). A method to minimize puncturing force and organ deformation. International Journal of Computer Assisted Radiology and Surgery 1(SUPPL. 7):277-280.
    [27] R. Wilson and S. Kavia (2010). Comparison of Large-Core Vacuum-Assisted Breast Biopsy and Excision Systems. Minimally Invasive Breast Biopsies. R. Brun del Re. Berlin, Heidelberg, Springer Berlin Heidelberg: 23-41.
    [28] M. C. Mahoney (2008). Initial clinical experience with a new MRI vacuum-assisted breast biopsy device. Journal of Magnetic Resonance Imaging 28(4):900-905.
    [29] E. Cassano and C. Trentin (2017). Integrated Breast Biopsy for Best Radiological Diagnosis of Breast Cancer. Breast Cancer: Innovations in Research and Management. U. Veronesi, A. Goldhirsch, P. Veronesi, O. D. Gentilini and M. C. Leonardi. Cham, Springer International Publishing: 317-331.
    [30] 羅證簷 (2022)。空心針穿刺軟組織之內部切削行為探討。碩士論文,國立成功大學機械工程學系。
    [31] C. K. McGarry, L. J. Grattan et al. (2020). Tissue mimicking materials for imaging and therapy phantoms: a review. Physics in Medicine & Biology 65(23):23TR01.
    [32] N. G. Ramião, P. S. Martins et al. (2016). Biomechanical properties of breast tissue, a state-of-the-art review. Biomechanics and Modeling in Mechanobiology 15(5):1307-1323.
    [33] Y. Wang, R. K. Chen et al. (2014). Optimal needle design for minimal insertion force and bevel length. Medical Engineering & Physics 36(9):1093-1100.
    [34] S. T. R. Gidde, S. R. Acharya et al. (2022). Assessment of tissue damage from mosquito-inspired surgical needle. Minimally Invasive Therapy & Allied Technologies 31(7):1112-1121.
    [35] P. Li, Z. Yang et al. (2018). Tissue mimicking materials in image-guided needle-based interventions: A review. Materials Science and Engineering: C 93:1116-1131.
    [36] R. K. Chen and A. J. Shih (2013). Multi-modality gellan gum-based tissue-mimicking phantom with targeted mechanical, electrical, and thermal properties. Physics in Medicine & Biology 58(16):5511.
    [37] Y. He, Y. Liu et al. (2019). 3D-printed breast phantom for multi-purpose and multi-modality imaging. Quant Imaging Med Surg 9(1):63-74.
    [38] A. Antoniou, A. Nikolaou et al. (2023). Phantom-based assessment of motion and needle targeting accuracy of robotic devices for magnetic resonance imaging-guided needle biopsy. The International Journal of Medical Robotics and Computer Assisted Surgery 19(5):e2526.
    [39] P. Han and K. Ehmann (2013). Study of the effect of cannula rotation on tissue cutting for needle biopsy. Medical Engineering & Physics 35(11):1584-1590.
    [40] A. D. R. Li, K. B. Putra et al. (2020). Mosquito proboscis-inspired needle insertion to reduce tissue deformation and organ displacement. Scientific Reports 10(1):12248.
    [41] W. Li, B. Belmont et al. (2015). Design and Manufacture of Polyvinyl Chloride (PVC) Tissue Mimicking Material for Needle Insertion. Procedia Manufacturing 1:866-878.
    [42] M. Giovannini, H. Ren et al. (2018). Study on design and cutting parameters of rotating needles for core biopsy. Journal of the Mechanical Behavior of Biomedical Materials 86:43-54.
    [43] H. Kataoka, T. Washio et al. (2002). Measurement of the Tip and Friction Force Acting on a Needle during Penetration. Medical Image Computing and Computer-Assisted Intervention — MICCAI 2002, Berlin, Heidelberg, Springer Berlin Heidelberg.
    [44] A. M. Okamura, C. Simone et al. (2004). Force modeling for needle insertion into soft tissue. IEEE Transactions on Biomedical Engineering 51(10):1707-1716.
    [45] M. Oldfield, D. Dini et al. (2013). Detailed finite element modelling of deep needle insertions into a soft tissue phantom using a cohesive approach. Computer Methods in Biomechanics and Biomedical Engineering 16(5):530-543.
    [46] B. L. Tai, Y. Wang et al. (2013). Cutting Force of Hollow Needle Insertion in Soft Tissue. ASME 2013 International Manufacturing Science and Engineering Conference collocated with the 41st North American Manufacturing Research Conference.
    [47] J. T. Hing, A. D. Brooks et al. (2006). Reality-based needle insertion simulation for haptic feedback in prostate brachytherapy. Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.
    [48] W. Li, Y. Wang et al. (2015). Measurement of the Friction Force Inside the Needle in Biopsy. Journal of Manufacturing Science and Engineering 138(3).
    [49] N. Abolhassani, R. Patel et al. (2006). Control of soft tissue deformation during robotic needle insertion. Minimally Invasive Therapy & Allied Technologies 15(3):165-176.
    [50] M. Giovannini, J. Cao et al. (2019). Design and models of helical needle geometries for core biopsies. Journal of the Mechanical Behavior of Biomedical Materials 90:113-124.
    [51] K. Ehmann and K. Malukhin (2012). A Generalized Analytical Model of the Cutting Angles of a Biopsy Needle Tip. Journal of Manufacturing Science and Engineering 134(6).
    [52] J. Z. Moore and A. J. Shih (2010). Tissue oblique cutting flow angle and needle insertion contact length. Transactions of the North American Manufacturing Research Institution of SME 38.
    [53] J. Z. Moore, A. J. Shih et al. (2009). Blade oblique cutting of tissue for investigation of biopsy needle insertion. Transactions of the North American Manufacturing Research Institution of SME 37.
    [54] J. Z. Moore, Q. Zhang et al. (2010). Modeling of the Plane Needle Cutting Edge Rake and Inclination Angles for Biopsy. Journal of Manufacturing Science and Engineering 132(5).
    [55] J. Z. Moore, K. Malukhin et al. (2011). Hollow needle tissue insertion force model. CIRP Annals 60(1):157-160.
    [56] Y. Wang and D. Mei (2018). Five-plane lancet needle design for soft PVC phantom tissue cutting. Bio-Design and Manufacturing 1(3):195-202.
    [57] J. Z. Moore, Q. Zhang et al. (2012). Modeling cutting edge geometry for plane and curved needle tips. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 226(5):861-869.
    [58] M. Mahvash and P. E. Dupont (2009). Fast needle insertion to minimize tissue deformation and damage. 2009 IEEE International Conference on Robotics and Automation.
    [59] P. N. Brett, T. J. Parker et al. (1997). Simulation of resistance forces acting on surgical needles. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 211(4):335-347.
    [60] C. L. Lin, Y. C. Jheng et al. (2020). Design Optimization of Nonrotational and Rotational Needle Insertion for Minimal Cutting Forces. Journal of Medical Devices 14(2).
    [61] N. Abolhassani, R. Patel et al. (2004). Experimental study of robotic needle insertion in soft tissue. International Congress Series 1268:797-802.
    [62] N. Abolhassani, R. V. Patel et al. (2007). Minimization of needle deflection in robot-assisted percutaneous therapy. The International Journal of Medical Robotics and Computer Assisted Surgery 3(2):140-148.
    [63] A. G. Atkins, X. Xu et al. (2004). Cutting, by ‘pressing and slicing,’ of thin floppy slices of materials illustrated by experiments on cheddar cheese and salami. Journal of Materials Science 39(8):2761-2766.
    [64] M. N. Hochman and M. J. Friedman (2000). In vitro study of needle deflection: a linear insertion technique versus a bidirectional rotation insertion technique. Quintessence Int 31(1):33-9.
    [65] Y. C. Huang, M. C. Tsai et al. (2012). A piezoelectric vibration-based syringe for reducing insertion force. IOP Conference Series: Materials Science and Engineering 42(1):012020.
    [66] A. C. Barnett, J. A. Jones et al. (2016). Compliant Needle Vibration Cutting of Soft Tissue. Journal of Manufacturing Science and Engineering 138(11).
    [67] S. T. R. Gidde, S. Islam et al. (2022). Experimental study of mosquito-inspired needle to minimize insertion force and tissue deformation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 237(1):113-123.
    [68] H. Prescher, M. X. Ling et al. (2021). Scalpel edge roughness affects post-transection peripheral nerve regeneration. Surgery Open Science 4:1-6.
    [69] D. J. van Gerwen, J. Dankelman et al. (2012). Needle–tissue interaction forces – A survey of experimental data. Medical Engineering & Physics 34(6):665-680.
    [70] M. Sahlabadi and P. Hutapea (2018). Tissue Deformation and Insertion Force of Bee-Stinger Inspired Surgical Needles. Journal of Medical Devices 12(3).
    [71] Z. Liu, Z. Liao et al. (2022). Recent Advances in Soft Biological Tissue Manipulating Technologies. Chinese Journal of Mechanical Engineering 35(1):89.
    [72] A. C. Barnett, Y. S. Lee et al. (2015). Fracture Mechanics Model of Needle Cutting Tissue. Journal of Manufacturing Science and Engineering 138(1).
    [73] T. Azar and V. Hayward (2008). Estimation of the Fracture Toughness of Soft Tissue from Needle Insertion. Biomedical Simulation, Berlin, Heidelberg, Springer Berlin Heidelberg.
    [74] R. Tsumura, Y. Takishita et al. (2016). Histological evaluation of tissue damage caused by rotational needle insertion. 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).
    [75] J. Kerl, T. Parittotokkaporn et al. (2012). Tissue deformation analysis using a laser based digital image correlation technique. Journal of the Mechanical Behavior of Biomedical Materials 6:159-165.
    [76] M. J. Oldfield, A. Leibinger et al. (2015). Method to Reduce Target Motion Through Needle–Tissue Interactions. Annals of Biomedical Engineering 43(11):2794-2803.
    [77] C. S. Bjornsson, S. J. Oh et al. (2006). Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. Journal of Neural Engineering 3(3):196.
    [78] C. L. Lin and Y. A. Huang (2020). Simultaneously Reducing Cutting Force and Tissue Damage in Needle Insertion With Rotation. IEEE Transactions on Biomedical Engineering 67(11):3195-3202.
    [79] B. Liu, X. Yi et al. (2022). A Review of Nano/Micro/Milli Needles Fabrications for Biomedical Engineering. Chinese Journal of Mechanical Engineering 35(1):106.
    [80] Y. Wang, B. L. Tai et al. (2012). Grinding the sharp tip in thin NiTi and stainless steel wires. International Journal of Machine Tools and Manufacture 62:53-60.
    [81] W. Li, P. Zhou et al. (2016). Effects of needle inner surface topography on friction and biopsy length. International Journal of Mechanical Sciences 119:412-418.
    [82] Y. Cai, J. Moore et al. (2017). Novel surgical needle design and manufacturing for vibratory-assisted insertion in medical applications. Computer-Aided Design and Applications 14(6):833-843.
    [83] Y. Xu, X. Qin et al. (2018). A new method for evaluating the normal rake angle and inclination angle on medical needles. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 232(1):24-32.
    [84] M. Sahlabadi and P. Hutapea (2018). Novel design of honeybee-inspired needles for percutaneous procedure. Bioinspiration & Biomimetics 13(3):036013.
    [85] M. Giovannini, H. Ren et al. (2017). Tissue Cutting With Microserrated Biopsy Punches. Journal of Micro and Nano-Manufacturing 5(4).
    [86] Y. Xu, Q. Zhang et al. (2017). Cutting performance orthogonal test of single plane puncture biopsy needle based on puncture force. AIP Conference Proceedings 1834(1).
    [87] X. Gu, F. Hu et al. (2018). Using Simulation to Help Specify Design Parameters for Vacuum-Assisted Needle Biopsy Systems. Journal of Medical Devices 13(1).
    [88] F. Casanova, P. R. Carney et al. (2014). Effect of Needle Insertion Speed on Tissue Injury, Stress, and Backflow Distribution for Convection-Enhanced Delivery in the Rat Brain. PLOS ONE 9(4):e94919.
    [89] J. R. Crouch, C. M. Schneider et al. (2005). A Velocity-Dependent Model for Needle Insertion in Soft Tissue. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2005, Berlin, Heidelberg, Springer Berlin Heidelberg.
    [90] J. Blaber, B. Adair et al. (2015). Ncorr: Open-Source 2D Digital Image Correlation Matlab Software. Experimental Mechanics 55(6):1105-1122.
    [91] 余承翰 (2020)。具遠心延伸的下顎植體輔助式局部活動義齒之生物力學分析。碩士論文,國立成功大學機械工程學系。
    [92] E. M. Jones and M. A. Iadicola (2018). A good practices guide for digital image correlation. International Digital Image Correlation Society 10:1-110.
    [93] 李輝煌 (2020)。田口方法:品質設計的原理與實務。新北市:高立圖書有限公司。
    [94] G. Taguchi, S. Chowdhury et al. (2004). Taguchi's quality engineering handbook.

    無法下載圖示 校內:2028-10-12公開
    校外:2028-10-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE