簡易檢索 / 詳目顯示

研究生: 李格瑋
Lee, Ke-Wei
論文名稱: 氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光偵測器之製作與研究
Investigation and Fabrication of AlGaN/GaN Heterojunction Metal-Semiconductor-Metal (MSM) Photodetectors
指導教授: 李清庭
Lee, Ching-Ting
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 62
中文關鍵詞: 二維電子氣氮化鎵氮化鋁鎵光偵測器
外文關鍵詞: GaN, AlGaN, 2DEG, photodetector
相關次數: 點閱:64下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文係利用有機金屬氣相沉積(MOCVD)技術成長異質接面之氮化鋁鎵/氮化鎵結構,製作蕭特基二極體,量測金屬與半導體接觸的蕭特基位障及理想因子,最後將蕭特基二極體的研究結果應用於金屬-半導體-金屬光偵測器之製作,並量測其特性。

      論文中,我們先藉由霍爾量測量測有無漸變層於氮化鋁鎵/氮化鎵之間的兩片試片,由結果發現兩試片皆具有高的片濃度和載子遷移率,為了確定此原因是由氮化鋁鎵/氮化鎵異質接面能帶不連續與壓電效應產生電荷造成能帶彎曲,而在氮化鎵側產生一位阱,並有一很高濃度的電子侷限在小範圍的位阱內,稱為二維電子氣,所造成的結果。我們對兩試片進行電容-電壓量測,並利用半導體理論推導,而得到濃度與試片深度的關係圖,並由圖中發現在一很窄的深度範圍具有相當高的濃度,故推測此為二維電子氣造成的高濃度訊號。

      於氮化鋁鎵/氮化鎵異質接面金屬-半導體-金屬光偵測器的元件暗電流及光頻譜響應度中發現,元件因為受到介面態缺陷捕捉的結果,使得在光頻譜響應度在長波段會升高,以致無預期的結果。為了證明有介面態缺陷的存在,我們參考文獻上的方法,去比較蕭特基二極體在照光前和照光後的電容-電壓的量測結果,發現會有和文獻上類似的結果,證實介面態缺陷的存在。

      In this dissertation, the structure of GaN–based Schottky diodes and MSM photodetectors were epitaxied on Al2O3 (sapphire) substrates by metalorganic chemical vapor deposition system (MOCVD). Due to the Schottky contact characteristics of the diodes were directly related to performances of the MSM photodetectors, the Schottky diodes were fabricated formerly. We needed to take account of some Schottky parameters including the Schottky barrier height ΦB and the ideality factor n to ensure that devices have better Schottky contact. We also fabricated the AlGaN/GaN MSM photodetectors and measured the performances of MSM photodetectors.

      First, the high mobility and sheet concentration in room temperature were obtained by Hall measurement. This is well known that the existence of AlGaN/GaN heterojunction with spontaneous and piezoelectric polarization resulting in high sheet carrier densities and high room temperature mobility. Such phenomenon was so-called two-dimensional electron gas (2DEG) and could be proved by capacitance-voltage measurement.

      From the unexpected measuremental results of the MSM photodetectors, the interface state was the most important part we could consider. In order to prove the existence of interface state density, a capacitance-voltage (C-V) method with illumination was referred to demonstrate.

    Contents Abstract (in Chinese)…………………………………………… ………………I Abstract (in English)………………………………………… ………………III Acknowledge……………………………………………………… …………………V Contents………………………………………………………… …………………VI Table Captions……………………………………………………………………VII Figure Captions…………………………………………………………………VIII Chapter 1 Introduction……………………………………………………………1 1-1 Introduction……………………………………………………………………1 1-2 Organization of the thesis…………………………………………………3 Reference………………………………………………………………… …………4 Chapter 2 Background Theory……………………………………………… ……9 2-1 Theory of Metal-Semiconductor contact…………………………… ……9 2-1-1 Introduction of the Schottky contact…………………………………9 2-2 Theory of the MSM Photodetector…………………………………………10 2-2-1 Operation Principle……………………………………………………11 2-2-2 Geometry Consideration……………………………………… ………12 2-3 Theoretical Analysis……………………………………………… ………13 2-3-1 Dark Current…………………………………………………… ………13 2-3-2 Responsivity…………………………………………………… ………14 2-4 Fundamentals of theory and measurement techniques…………………14 2-4-1 Hall Measurement…………………………………………… ……………14 2-4-2 Capacitance-Voltage (C-V) Measurement………………………………15 2-4-3 Spectral Response…………………………………………………………16 Reference……………………………………………………………………………26 Chapter 3 Fabrication of the devices……………………………… ………28 3-1 Structure Design……………………………………………………… ……28 3-1-1 Crystal Growth…………………………………………………… ……29 3-2 Devices Structure and Fabrication………………………………………29 3-2-1 Device Structure and Schottky Metal Type……………… ………29 3-2-2 Fabrication of the Schottky diodes……………………… ………30 3-2-3 Fabrication of the Metal-Semiconductor-Metal Photodetectors……………………………………………………………… ……32 Reference……………………………………………………………………………39 Chapter 4 Measurement and Results……………………………………………40 4-1 Hall Measurement Results……………………………………………… …40 4-2 Measurement of the Schottky diodes………………… …………………40 4-2-1 Current-Voltage Measurement……………………………………………40 4-2-2 Capacitance-Voltage (C-V) Measurement………………………………41 4-3 Measurement of the Metal-Semiconductor-Metal photodetectors……44 4-3-1 Measurement of Current and Voltage characteristics of MSM Photodetectors…………………………………………………44 4-3-2 Current-Voltage Behaviors under Different Irradiation…………46 Reference……………………………………………………………………………59 Chapter 5 Conclusions and Future Works……………… ……………………61 5-1 Conclusions……………………………………………………………………61 5-2 Future Works………………………………………… ………………………62

    [1-1] E. Monroy, F. Omn`es and F.Calle, “Wide-bandgap semiconductor ultraviolet photodetectors”, Semicond. Sci. Technol. Vol. 18, p. R33 (2003)
    [1-2] M. S. Shur, “GaN Based Transistors for High Power Applications”, Solid-State Electronics, Vol. 42, p. 2131 (1998)
    [1-3] S. Nakamura and G. Fasol, The Blue Laser Diodes, (Springer Heidelberg, 1997)
    [1-4] S. Nakamura, T. Mukai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett. Vol. 64, p. 1687 (1994)
    [1-5] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes”, Jpn. J. Appl. Phys. Vol. 34, p. L1332 (1995)
    [1-6] T. Mukai, D. Morita and S. Nakamura, “High-power UV InGaN/AlGaN double-heterostructure LEDs”, J. Cryst. Growth, Vol. 190, p. 778 (1998)
    [1-7] T. Mukai, H. Narimatsu, and S. Nakamura, “Amber InGaN-Based Light-Emitting Diodes Operable at High Ambient Temperatures”, Jpn. J. Appl. Phys. Vol. 37, p. L479 (1998)
    [1-8] M. A. Khan, J. N. Kuznia, A. R. Bhattarai and D. T. Oslon, “Metal-semiconductor field effect transistor based on single crystal GaN”, Appl. Phys. Lett. Vol. 62, p. 1786 (1993)
    [1-9] M. A. Khan, J. N. Kuznia, D. T. Olson, W. J. Schaff, J. W. Burm and M. S. Shur, “Microwave performance of a 0.25 µm gate AlGaN/GaN heterostructure field effect transistor”, Appl. Phys. Lett. Vol. 65, p. 1121 (1994)
    [1-10] F. Ren, C. R. Abernathy, J. M. Van Hove, P. P. Chow, R. Hickman, J. J. Klaasen, R. F. Kopf, H. Cho, K. B. Jung, J. R. La Roche, R. G. Wilson, J. Han, R. J. Shul, A. G. Baca and S. J. Pearton, “300°C GaN/AlGaN Heterojunction Bipolar Transistor”, MRS Internet J. Nitride Semicond. Res. Vol. 3, p. 41 (1998)
    [1-11] G. S. Nakamura, “InGaN-based violet laser diodes”, Semicond. Sci. Technol. Vol. 14, p. R27 (1999)
    [1-12] M. A. Khan, J. N. Kuznia, D. T. Olson, M. Blasingame and A. R. Bhattarai, “Schottky barrier photodetector based on Mg-doped p-type GaN films”, Appl. Phys. Lett. Vol. 63, p. 2455 (1993)
    [1-13] M. A. Khan, J. N. Kuznia, D. T. Olson, J. M. Van hove, M. Blasingame and L. F. Reitz, “High-responsivity photoconductive ultraviolet sensors based on insulating single-crystal GaN epilayers”, Appl. Phys. Lett. Vol. 60, p. 2917 (1992)
    [1-14] Z. C. Huang, D. B. Mott, P. K. Shu, R. Zhang, J. C. Chen and D. K. Wickenden, “Optical quenching of photoconductivity in GaN photoconductors”, J. Appl. Phys. Vol. 82, p. 2707 (1997)
    [1-15] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis and J. C. Campell, “Comprehensive characterization of metal-semiconductor-metal ultraviolet photodetectors fabricated on single-crystal GaN”, J. Appl. Phys. Vol. 83, p. 6148 (1998)
    [1-16] M. Misra, D. Korakakis, H. M. Ng and T. D. Moustakas, “Photoconductive detectors based on partially ordered AlxGa1 – xN alloys grown by molecular beam epitaxy”, Appl. Phys. Lett. Vol. 74, pp. 2203 (1999)
    [1-17] T. N. Oder, J. Li, J. Y. Lin and H. X. Jiang,” Photoresponsivity of ultraviolet detectors based on InxAlyGa1–x–yN quaternary alloys”, Appl. Phys. Lett. Vol. 77, p. 791 (2000)
    [1-18] Q. Chen, M. A. Khan, C. J. Sun and J. W. Yang, “Visible-blind ultraviolet photodetectors based on GaN p-n junctions”, Electron. Lett. Vol. 31, p. 1781 (1995)
    [1-19] E. Monroy, E. Munoz, F.J. Sanchez, F. Calle, E. Calleja, B. Beaumont, P. Gibart, J. A. Munoz and F. Cusso, “High-performance GaN p-n junction photodetectors for solar ultraviolet applications”, Semicond. Sei. Technol. Vol. 13, p. 1042 (1998)
    [1-20] V. Kuryatkov, A. Chandolu, B. Borisov, G. Kipshidze, K. Zhu, S. Nikishin, H. Temkin and M. Holtz, “Solar-blind ultraviolet photodetectors based on superlattices of AlN/AlGa(In)N,” Appl. Phys. Lett. Vol. 82, p. 1323 (2003).
    [1-21] Y. Z. Chiou, Y. K. Su, S. J. Chang, Y. C. Lin, C. S. Chang and C. H. Chen, “InGaN/GaN MQW p-n junction photodetectors”, Solid-State Electronics, Vol. 46, p. 2227 (2002)
    [1-22] D. Walker, A. Saxler, P. Kung, X. Zhang, M. Hamilton, D. Jiaz and M. Razeghi, “Visible blind GaN p-i-n photodiodes”, Appl. Phys. Lett. Vol. 72, p. 3303 (1998)
    [1-23] E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sanchez and M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”, Appl. Phys. Lett. Vol. 74, p. 1171 (1999)
    [1-24] C. J. Collins, U. Chowdhury, M. M. Wong, B. Yang, A. L. Beck, R. D. Dupuis, and J. C. Campbell, “Improved solar-blind detectivity using an AlxGa1-xN heterojunction p-i-n photodiode”, Appl. Phys. Lett. Vol. 80, p. 3754 (2002)
    [1-25] T. Li, D. J. H. Lambert, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Dupuis, and J. C. Campbell, “Low-noise back-il-luminated AlxGa1-xN-based p-i-n solar-blind ultraviolet photodetectors”, IEEE J. Quantum Electron. Vol. 37, p. 538 (2001)
    [1-26] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart and J. A. Munoz, “AlxGa1-xN: Si Schottky barrier photodiodes with fast response and high detectivity”, Appl. Phys. Lett. Vol. 73, p. 2146 (1998)
    [1-27] S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, V. Adivarahan, J. Yang, G. Simin and M. A. Khan, “Low-frequency noise in Al0.4Ga0.6N-based Schottky barrier photodiodes”, Appl. Phys. Lett. Vol. 79, p. 866 (2001)
    [1-28] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz and M. Razeghi, “High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN”, Appl. Phys. Lett. Vol. 74, p. 762 (1999)
    [1-29] E. Monroy, F. Calle, E. Munoz and F. Omnes, “Effects of Bias on the Responsivity of GaN Metal-Semiconductor-Metal Photodiodes”, Phys. Stat. Sol. (a), Vol. 176, p. 157 (1999)
    [1-30] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo and M. Umeno, “Back-Illuminated GaNMetal-Semiconductor-Metal UV Photodetector with High Internal Gain”, Jpn. J. Appl. Phys. Vol. 40, p. L505 (2001)
    [1-31] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts”, IEEE photon. Technol. Lett. Vol. 13, p. 848 (2001)
    [1-32] H. Z. Xu, Z. G. Wang, M. Kawabe, I. Harrison, B. J. Ansell and C. T. Foxon, “Fabrication and characterization of metal-semiconductor-metal (MSM) ultraviolet photodetectors on undoped GaN/sapphire grown by MBE”, J. Cryst. Growth, Vol. 218, p. 1 (2000)

    [2-1] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, (Clarendon Press, Oxford, 1998)
    [2-2] S. M. Sze, Semiconductor Device Physics and Technology, p. 160(1985)
    [2-3] S. M. Sze, Semiconductor Device Physics and Technology, p. 278(1985)
    [2-4] S. M. Sze, D. J. Coleman, JR. and A. Loya, “Current Transport in Metal-Semiconductor-Metal (MSM) structures”, Solid-State Electronics, Vol. 14, p. 1209 (1971)
    [2-5] M. Marso, M. Horstmann, M. Hardtdegen, P. Kordos and H. Luth, “Electrical behavior of the InP/InGaAs based MSM 2DEG diode”, Solid-State Electronics, Vol. 41, p. 25 (1997)
    [2-6] P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed. (Prentice Hall, New Jersey, 1997)
    [2-7] H. Z. Xu, Z. G. Wang, M. Kawabe, I. Harrison, B. J. Ansell and C. T. Foxon, “Fabrication and characterization of metal-semiconductor-metal (MSM) ultraviolet photodetectors on undoped GaN/sapphire grown by MBE”, J. Cryst. Growth, Vol. 218, p. 1 (2000)
    [2-8] M. S. Tyagi, Metal-Semiconductor Schottky Barrier Junctions and Their Application, p. 20 (New York, 1984)
    [2-9] D. K. Schroder, Semiconductor material and device characterization, p. 510 (Wiley-Interscience Publication, 1998)
    [2-10] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff and L. F. Eastman “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures”, J. Appl. Phys. Vol. 85, p. 3222 (1999)

    [3-1] J. H. Burroughes, “H-MESFET compatible GaAs/AlGaAs MSM photodetector”, IEEE Photon. Technol. Lett. Vol. 3, p. 660 (1991)
    [3-2] E. H. Rhoderick, R. H. Williams, Metal-Semiconductor Contacts, (Clarendon Press. Oxford, 1998)
    [3-3] http://environmentalchemistry.com

    [4-1] S. M. Sze, Semiconductor Device Physics and Technology, p. 232 (1985)
    [4-2] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo and M. Umeno, “Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator–semiconductor interfaces with low interface state density”, Appl. Phys. Lett. Vol. 73, p. 809 (1998)
    [4-3] S. G. Petrosyan and A. Y. Shik, “Contact phenomena in a two-dimensional electron gas”, Sov. Phys. Semicond., Vol. 23, p. 696 (1989)
    [4-4] B. Gelmont, M. Shur and C. Moglestue, “Theory of junction between two-dimensional electron gas and p-type semiconductor”, IEEE, Transactions on Electron Devices, Vol. 39, p. 1216 (1992)
    [4-5] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, p.98 (Clarendon Press, Oxford, 1998)
    [4-6] M. Kingenstein, J. Schneider, C. Moglestue, A. Hulsmann, J. Schneider and K. Kohler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors”, Solid-State Electronics., vol. 37, p. 333 (1994)
    [4-7] J. Burm, and L. F. Eastman, “Low- frequency gain in MSM photodiodes due to charge accumulation and image force lower”, IEEE Photo. Technol. Lett., vol. 8, p. 113 (1996)
    [4-8] L. C. Chen, M. S. Fu and I. L. Hung, “Metal–Semiconductor–Metal AlN Mid-Ultraviolet Photodetectors Grown by Magnetron Reactive Sputtering Deposition”, Jpn. J. Appl. Phys. Vol. 43, p. 3353 (2001)
    [4-9] S. F. Soares, ”Photoconductive Gain in a Schottky barrier Photodiode”, Jpn. J. Appl. Phys. Vol. 31, p. 210 (1992)

    下載圖示 校內:立即公開
    校外:2005-08-30公開
    QR CODE