| 研究生: |
李雅惠 Li, Ya-Huei |
|---|---|
| 論文名稱: |
多晶鐵電薄膜電域成長之奈米尺度動態研究 Nanoscale studies of domain-growth dynamics in polycrystalline ferroelectric thin film |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 鋯鈦酸鉛 、壓電力顯微鏡 |
| 外文關鍵詞: | Pb(Zr0.52Ti0.48)O3, PZT, Piezoresponse force microscopy |
| 相關次數: | 點閱:60 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,以掃描式探針顯微鏡技術探討在奈米尺度下多晶鐵電薄膜之電域長成的動態現象。樣品為有機金屬鹽裂解法製備之鋯鈦酸鉛 (Pb(Zr0.52Ti0.48)O3, PZT) 鐵電性薄膜。在此形變相界附近的PZT薄膜中可見外加電壓下產生極高比例的90o電域反轉。當電域在作用場下的晶粒擴散時,域壁呈現出緩慢爬行的動態行為,即過程中存在許多穩定可觀察的中間狀態。此時電域擴散成長的現象符合Kolmogorov - Avrami - Ishibashi (KAI) model,晶界上的缺陷可成為域壁擴散的阻礙。電域擴散至晶界外的現象中顯示,晶界上的缺陷會造成電域集體反轉,遠離KAI模型預測,降低於多晶薄膜中書寫固定尺寸電域的擴散穩定性。電域成長現象中發現,延伸方向會朝缺陷越多的晶粒反轉,也就是說晶粒越小,其相對的缺陷也越大和越不穩定,越容易受到反向電場作用而反轉。動態的電域成長過程中,晶軸扭轉方向會有90°和180°的中間穩定態而,其極化方向在反向場作用下最後狀態都會形成180°反轉的穩定態。
We report the results of nanoscale domain wall motion and switching dynamics on polycrystalline Pb(Zr0.52Ti0.48)O3 (PZT) thin films during ferroelectric polarizing processes, which were investigated by scanning probe microscopy (SPM). PZT (Pb(ZrTi)O3) thin films were synthesized by metal-organic decomposition. Relatively high percentage of 90o domain switching was found under external fields in the PZT films near morphotropic phase boundary. When the domain wall propagated inside the voltage-written grain, it followed the creep motion and stable intermediate domain states could be obtained. Switching mechanisms had been fitted well with the Kolmogorov-Avrami-Ishibashi (KAI) model within single grain. The dipole defects and the grain boundary might act as the pinning sites. The results also suggested that the defects at grain boundaries will enhance the ferroelastic switching and decrease the stability of written domains in polycrystalline films. During the process of domain growth, the polarization reversing will have 90° or 180° switching metable states and finally all reaches 180 ° switching states.
1. T. Mitsui, I. Tatsuzaki, and E. Nakamura, “An introduction to the physics of ferroelectrics”, Gordon and Breach Science Publishers, New York, (1976).
2. N. A. Spaldin, Science 304, 1606 (2004).
3. A. Gruverman, O. Auciello, and H. Tokumoto, Annu. Rev. Mater. Sci. 28, 101 (1998).
4. C. S. Ganpule, V. Nagarajan, B. K. Hill, A. L. Roytburd, E. D. Williams, and R. Ramesh, S. P. Alpay, A. Roelofs and R. Waser and L. M. Eng, J. Appl. Phys. 91, 1477 (2002).
5. M. Molotskii, J. Appl. Phys. 97, 014109 (2005).
6. P. Paruch, T. Tybell, and J.-M. Triscone, Appl. Phys. Lett. 79, 530 (2001).
7. T. J. Yang, Venkatraman Gopalan, P. J. Swart, and U. Mohideen, Phys. Rev. Lett. 82, 4106 (1999).
8. R. Edwin Garcíaa, Bryan D. Huey, and John E. Blendell, J. Appl. Phys. 100, 064105 (2006).
9. Berdard Jaffe, William R. Cook, and Hans Jaffe, “Piezoelectric Ceramics”, Academic Press Inc., London, (1970).
10. J. Y. Jo, S. M. Yang, H. S. Han, D. J. Kim, W. S. Choi, T. W. Noh, T. K. Song, J. G. Yoon, C. Y. Koo, J. H. Cheon, and S. H. Kim, Appl. Phys. Lett. 92, 012917 (2008).
11. Kenji Uchino, “Ferroelectric Devices”, Marcel Dekker, Inc., New York, (2000).
12. 鐘維烈,“鐵電體物理學”,科學出版社, (2000).
13. A. J. Moulson, and J. M. Herbert, “Electroceramics Materials Properties Applications”, Chapman & Hall, New York, (1990).
14. R. E. Newnham, and L. E. Cross, Phys. Rev. B 34, 1595 (1986).
15. William D. Callister, Jr., “Materials Science And Engineering”, John Wiley &Sons Inc., 3th, Canada, (1994).
16. C. H. Ahn, K. M. Rabe, and J.-M. Triscone, Science 303, 488 (2004).
17. Nicola A. Spaldin, SCIENCE 304, 1606 (2004).
18. T. Tybell, P. Paruch, T. Giamarchi, and J.-M. Triscone, Phys. Rev. Lett. 89, 097601 (2002).
19. P. Paruch,a) T. Tybell, and J.-M. Triscone, Appl. Phys. Lett. 79, 530 (2001).
20. A. Roelofs, N. A. Pertsev, R. Waser, F. Schlaphof, L. M. Eng, C. Ganpule, V. Nagarajan, and R. Ramesh, Appl. Phys. Lett. 80, 1424 (2002).
21. Wei Lia, and Marin Alexe, Appl. Phys. Lett. 91, 262903 (2007).
22. A. N. Kolmogorov, Izv. Akad. Nauk SSSR, Ser. Math. 3, 355 (1937).
23. M. Avrami, J. Chem. Phys. 8, 212 (1940).
24. J.Y. Jo, H. S. Han, J.-G. Yoon, T. K. Song, S.-H. Kim, and T.W. Noh, Phys. Rev. Lett. 99, 267602 (2007).
25. V. Nagarajana, S. Aggarwal, A. Gruverman, R. Ramesh, and R. Waser, Appl. Phys. Lett. 86, 262910 (2005).
26. L. E. Scriven, Mat. Res. Soc Symp. Proc., 121, 717 (1998).
27. 陳力俊, “材料電子顯微鏡學”, 行政院國家科學委員會精密儀器發展中心, 民92。
28. Sergei N. Magonov and Myung-Hwan Whangbo, New York VCH, (1996).
29. Morris, V. J., Kirby, A. R., Gunning, A. P., “Atomic Force Microscopy for Biologists”, Imperial College Press: London, 1999.
30. R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer, L. Howald, and H.-J. Gijntherodt, J. Appl. Phys., 74, 12 (1993).
31. M. Alexe and A. Gruverman, “Nanoscale Characterisation of Ferroelectric Materials-Scanning Probe Microscopy Approach”, Springer, (2004).
32. M. Abplanalp, L.M. Eng and P. Günter, Appl. Phys. A,66, 231 (1998).
33. Chia-Hui Chueh, “Studies of PZT thin films by variable-temperature piezoresponse force microscopy”, 國立清華大學物理研究所碩士論文 (2003)。