| 研究生: |
張三酉 Chang, San-Yu |
|---|---|
| 論文名稱: |
竹片應用於撓曲主動空間結構之研究 A Bending-active Spatial Structure Using Split Bamboo |
| 指導教授: |
杜怡萱
Tu, Yi-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | 輕量結構 、撓曲主動 、竹 、實構 |
| 外文關鍵詞: | lightweight structure, bending-active structure, split bamboo, practical construction |
| 相關次數: | 點閱:162 下載:35 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著節能減碳議題逐漸受到重視,綠色材料的使用成為結構設計之趨勢。竹材具有良好的固碳能力,能夠在三、四年內生長為能作為結構使用之成材,然而目前因台灣欠缺竹構造相關建築法規,使得竹構造長期不被重視。本研究以廣泛生長於台灣西南部之刺竹竹片為材料,利用竹片良好的彎曲性能,透過撓曲主動的原理提升構件剛度,並以少量人力及簡易工具即可完成搭建為前提,設計構築一座成人可進入使用之輕量空間結構。藉由將竹片重新視為新材料,以工程方法對其進行規劃、設計、驗證與施工,建立一套完整的設計方法論。
本研究首先以自重下僅受純軸力的懸垂殼(Catenary shell)作為主要造形依據發展結構系統,因應尺寸與材料之限制,進行接頭、開口部、基礎的細部設計,同時透過縮尺模型檢核結構的造型、空間與分層施工的可行性。設計發展完成以後,針對竹材構件與多種接頭方案進行力學試驗,並計算各構件與接頭的設計強度,選用最適合的接頭方案應用於空間結構,最終進行足尺之實構以檢驗其施工性與真實強度。由於竹材作為天然材料在尺寸上具有變異性,本研究將結構在構造上切分為三層,能減少每次使用構件長度以降低尺寸變化,並使其能夠分層施工,以降低每次施工所需高度而不須搭建施工架。
本研究使用SAP2000對整體結構進行分析,根據台灣建築物耐風設計規範計算設計風力並設定風載重,探討整體結構於自重與風力作用下之行為,並檢核構件與接頭強度是否滿足需求。由於不確定空間結構中的交叉接頭剛性是否足夠,本文分別將其束制條件設定為鉸接與剛接進行分析,結果顯示鉸接模型之多項分析結果超出設計強度,顯示接頭束制條件明顯影響結構行為。
This study utilized split Thorny Bamboo widely found in southwestern Taiwan to create a spatial structure system that can be applied in architecture. The strength and stiffness of members are enhanced through active bending, thus creating a more efficient use and reduce carbon emissions. The design purpose is to make a lightweight structure that can be easily constructed with manual labor without using falsework or scaffold.
The study set up a complete planning-designing-verifying-and-constructing methodology, in which split bamboo is considered as new material. Catenary shell was selected to be the form of the structure, which members are mainly subjected to axial force under gravity load. Then, detail design was made according to the structure scale, material size, and constructability issues, through building various small-scaled models simultaneously. After the design, material and several joint alternative tests were performed to determine the properties of bamboo material and joints, later calculated into joint and member capacity. Finally, full-scale construction was carried out for practice.
The overall analysis of the structure was performed by using SAP2000, applying gravity load and lateral wind loads calculated according to “Taiwan building wind-resistant design code” to the model. Hinge joint and fixed joint were applied respectively to the structure model, the result shows that the hinge joint model has a larger deformation and exceeds the design capacity, while the fixed joint model meets the requirements.
1. Lienhard, J., Alpermann, H., Gengnagel, C., and Knippers, J., “Active bending, a review on structures where bending is used as a self-formation process,” International Journal of Space Structures, 28(2-3), 187-196, 2013.
2. Janssen, J. J. A., Bamboo in Building Structures, Master Thesis, Eindhoven University of Technology, Eindhoven, 1981.
3. López, O. H., Manual de Construcción con Bambú. Bogotá: Estudios Técnicos Colombianos, 1981.
4. 林維治、張添榮,「林維治先生竹類論文集」,臺灣省林業試驗所,1996。
5. 黃世孟、劉安平,「推展竹材建築與落實竹材科技補助研究計畫」,內政部建築研究所補助研究計畫報告,2003。
6. Obataya, E., Kitin, P., and Yamauchi, H., “Bending characteristics of bamboo (Phyllostachys Pubescens) with respect to its fiber-foam composite structure,” Wood Science and Technology, 41, 385-400, 2007.
7. 游家誠,「古蹟歷史建築修復施作過程竹材保護棚架系統之研擬與應用」,碩士論文,國立成功大學建築學系,台南,2009。
8. Oyague, T. C., Manual de Construcción de Estructuras con Bambú, Lima: SCENICO, 2014.
9. 林家荷,「竹材應用於薄膜式完全張力體之研究」,碩士論文,國立成功大學建築學系,台南,2015。
10. 永井拓生、陶器浩一,「竹の設計強度の算定および人力施工が可能な接合法の開発」,日本建築学会技術報告集,第22巻第52号,925-928,2016。
11. Salzer, C., Wallbaum, H., Alipom, M., and Lopez, L. F., “Determining material suitability for low-rise housing in the Philippines: physical and mechanical properties of the bamboo species Bambusa blumeana,” BioResources, 13(1), 346-369, 2018.
12. Lorenzo, R., Godina, M., Mimendi, L., and Li, H., “Determination of the physical and mechanical properties of Moso, Guadua and Oldhamii bamboo assisted by robotic fabrication,” Journal of Wood Science, 66(20), 2020.
13. Ramful, R., and Sakuma, A., “Investigation of the effect of inhomogeneous material on the fracture mechanisms of bamboo by finite element method,” Materials (Basel), 13(21), 2020.
14. ISO, TC165 N314 Determination of Physical and Mechanical Properties of Bamboo, 2001.
15. ISO, TC165 N315 Laboratory Manual on Testing Methods for Determination of Physical and Mechanical Properties of Bamboo, 2001.
16. Shan, B., Gao, L., Li, Z., Xiao, Y. & Wang, Z., “Research and Applicant of Solar Energy-Prefabricated Bamboo Pole House.”, Proceedings of the 12th International Symposium on Structural Engineering, 2012.
17. 馬子斌,「臺灣主要竹材之物理性質及力學性質」,台灣省林業試驗所報告第106號,1964。
18. 杜怡萱,竹構接頭設計委託試驗報告,國立成功大學建築系,台南,2019。